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Abstract. A method for designing laminates is presented using geometry projection to optimize
the layout of additively manufactured variable-stiffness composite laminates. By considering fiber-
reinforced bars as geometric primitives, the geometry projection methodology is extended to include
optimizing regions with intersecting load paths. This is achieved by utilizing a dual representation of
bars, which considers the geometric parameters and the element-wise density field representation. The
dual representation enables the combining and overlapping of bars, resulting in a localized orthotropic
material response at overlapping regions that mitigates the transverse compliant response of fiber-
reinforced components. The proposed method’s effectiveness is demonstrated through minimizing the
compliance of the Messerschmitt-Bölkow-Blohm beam problem, a well-known benchmark problem in
topology optimization.
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1. Introduction
Our study focuses on developing and optimiz-
ing variable-stiffness composite laminates (VSCLS)
that can be produced using additive manufactur-
ing. These VSCLs consist of layers with differ-
ent orientations of fibers, which are customized
to achieve specific mechanical properties, such as
maximizing the stiffness-to-weight ratio. Design-
ing VSCLs involves considering various factors, in-
cluding fiber orientation, stacking order, and layer
thickness. Unlike constant stiffness composites [1],
optimizing VSCLs, as discussed elsewhere [2], is
challenging due to the absence of analytical for-
mulations. Therefore, designing VSCLs necessi-
tate the use of discretization methods, such as the
finite element method (FEM), to represent vari-
ations in material constituents. This leads to
increased design variables, making the optimiza-
tion process computationally intensive. As a re-
sult, computational design tools like topology op-
timization (TO) have become crucial for achiev-
ing the desired mechanical performance. These
tools can also accommodate modifications result-
ing from advanced manufacturing processes [3],
such as continuous fiber-fused filament fabrication
(CF4).

Topology optimization (TO) is an iterative pro-
cess for finding the optimal material distribution in
a design domain, minimizing an objective function

under constraints. Various methods include homog-
enization, solid isotropic material with penalization
(SIMP) [4], level-set [5], evolutionary structural opti-
mization, phase field, and feature mapping [6]. De-
tails on these approaches have been reviewed else-
where [7, 8]. Various techniques have also been ad-
vanced to determine the optimal distribution of fiber
orientations within the design domain, as reviewed
elsewhere [9].

In this paper, a geometry projection (GP) based [10]
procedure is formulated to enable the design of VS-
CLs. While using fiber-reinforced bars (FRBs) as
features, we modify the GP methodology in multiple
ways. Initially, we leverage the dual nature of the ge-
ometry projection method to define overlapping FRBs
in the design domain. These overlapping FRBs are
then retained and modeled using composite laminate
theory to calculate homogenized stiffness matrices,
resulting in a local orthotropic material response. Ad-
ditionally, forming overlapping FRBs in the design
domain reduces the high strain energy density at in-
tersecting load paths, which is further amiable for
optimization. The component-wise GP formulation
enables the seamless printing of VSCLs with the clear
manifestation of overlapping components. Nonethe-
less, the proposed method to design VSCLs is limited
to a single layer, which we call GP-AM.
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2. Geometry projection
formulation for
variable-stiffness composite
laminates

The GP procedure begins by mapping the design
variables of the bar to a density field ρb (x; zb), where
x represents any point in the design region. The
dual geometric parameters/density representation can
consider individual bars as high-level geometric objects
or field variables in component densities.

The design in this work involves the combination of
multiple FRBs. Each bar b ∈ B, where B denotes the
set of all bar indices, is represented as a rectangle with
semicircular caps whose medial axis is a line segment,
which occupies a region Ωb ∈ R2. The medial axis
is characterized by its two endpoints (x1b,x2b), and
the offset distance corresponds to the radius rb of the
bar. A membership variable αb ∈ [0, 1] is assigned
to each bar and penalized similarly to density-based
methods, allowing the optimizer to remove or include
it in the design. The design variable vector zb for bar
b is therefore expressed as:

zb := (x1b,x2b, rb, αb) . (1)
The projected density at a location x is determined

by the intersection of a ball with a radius r and cen-
tered at x with Ωb, i.e.:

ρb(x; zb) := |Br
x ∩ Ωb (zb)|

|Br
x|

. (2)

In 2D, under the assumption that r is significantly
smaller than the dimensions of the bar, the intersection
of Br

x and ∂Ωb can be approximated as a line segment.
As a result, the proportion of the projected density
can be determined by calculating the proportion of the
circular segment with a height of h = r − ϕb, where
ϕb represents the signed distance from x to ∂Ωb. The
projected density for bar b is a uniquely determined
function of ϕb, effectively functioning as a regularized
Heaviside function:

ρb(x; zb) := H̃

(
ϕb(x; zb)

r

)
. (3)

The expression for H̃ is given.

H̃(x) =


0, if x ≤ −1
1 + 1

π

(
x

√
1 − x2 − arccosx

)
, if |x| < 1

1, if x ≥ 1

dH̃

dx
=

{
2
√

1 − x2/π, if |x| < 1
0, otherwise .

A penalized density is determined for each bar which
is utilized to compute its elastic stiffness tensor. This
is similar to the SIMP technique employed in density-
based topology optimization [11]. The penalized den-
sity is expressed as:

ρ̆eff
b (x; zb) := (αbρb(x; zb))q

, (4)

where we recall q is the penalization factor.

2.1. Combining components
Eq. (2) pertains to the projection of a single bar. This
study aims to focus on continuous fiber reinforcement,
particularly in areas where multiple reinforcements
overlap. This requires the material interpolation to
accurately represent the stiffness that arises from over-
lapping bars. A straightforward approach is to com-
pute the element’s elasticity tensor as the sum of all
elasticity tensors:

Ce = Cv +
nb∑

b=1
ρ̆eff

be (Cb − Cv) . (5)

The elasticity tensor interpolation Ce given by (5)
can be used to interpolate between the solid material
(bar material Cb) and void material Cv.

2.2. Elasticity tensor for overlapping
components

The bar’s material coordinate system (MCS), repre-
sented by {ê1b, ê2b, ê3b}, is typically not the same as
the laminate coordinate system (LCS), {e1, e2, e3}.
We assume that the fiber reinforcement aligns with
ê1b, and we define ê2b so that it is orthogonal to ê1b.
Furthermore, we define e3 = ê1b × ê2b such that it
corresponds to the global out-of-plane axis.

For plane stress of the laminate, the components of
the elasticity tensor Cb of bar b in LCS are given by

Cp
b = T ⊤

1 Ĉ
p
bT 1 and Cs

b = T ⊤
2 Ĉ

s
bT 2, (6)

with

T 1 =

[
c2 s2 cs
s2 c2 −cs

−2cs 2cs c2 − s2

]
, T 2 =

[
c −s
s c

]
, (7)

where, c and s denote the cosine and sine of the angle
θ respectively, where θ represents the angle between
the axes ê1 and x. The 3×3 matrix Ĉ

p
b establishes the

relationship between the in-plane strains {εx, εy, γxy}
and the stresses {σx, σy, τxy} in LCS. Similarly, the
2 × 2 matrix Ĉ

s
b governs the relationship between the

out-of-plane shear strains {γxz, γyz} and the stresses
{τxz, τyz} in LCS.

2.3. Elemental laminate elasticity
matrix

For a laminate that is symmetrical with respect to
the middle plane (z = 0) and consists of 2nb layers,
the membrane-bending coupling matrix Dmd is equal
to zero. We utilize the first shear deformation theory
(FSDT) to analyze the mechanical behavior of VSCLs.
In the FSDT, we relax Kirchhoff’s theory by consid-
ering that the transverse normal no longer remains
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Material E1 E2 v12 G12 G13 G23

Carbon epoxy AS4/3501-6 113.6 GPa 9.650 GPa 0.334 6.0 GPa 6.0 GPa 3.1 GPa

Table 1. Material properties used for all the examples.

perpendicular to the mid-plane (z = 0) after deforma-
tion. This implies that the elastic displacement field
within the laminate is expanded by as:

u(x, y, z) = u(x, y) + zψx(x, y)
v(x, y, z) = v0(x, y) + zψy(x, y)
w(x, y, z) = w0(x, y),

(8)

where u0(x, y) and v0(x, y) represent in-plane displace-
ments, while w0(x, y) represents the out-of-plane dis-
placement. The subscript (·)0 indicates the displace-
ment field of the reference plane.

Using four-node, bilinear, quadrilateral, and plane-
stress elements, we construct element stiffness matri-
ces based on the abovementioned assumptions. The
stiffness matrix for the eth element can be represented
as:

Dme =
nb∑
i=1

[hi+1 − hi] Cp
ei;

Dse =
nb∑
i=1

[hi+1 − hi]κCs
ei;

Dde =
nb∑

i=1

1
3

[
h3

i+1 − h3
i
]

Cp
ei.

(9)

Each bar is defined by the top and bottom planes
hi+1 and hi. The shear correction factor is κ = 5/6.
Additionally, we assume that the layer thickness H
is uniform, which means that (hi+1 − hi) = H, and
we also assume that the effect of stacking on the
bending stiffness is disregarded, with hb = 0, leading
to (h3

b+1 − h3
b) = H3 for all bars.

3. Optimization problem and
sensitivity analysis

We address the minimization of compliance for a spec-
ified volume fraction limit. We formulate the opti-
mization problem as follows:

min{zb} f := log(c+ 1)
subject to:

v ≤ v̄
KU = f
zi ≤ zi ≤ z̄i, i = 1, 2, . . . , nz,

(10)

where compliance, denoted by c = U⊤f , and U and
f represent the global displacement and force vectors,
respectively. The value v̄ sets an upper limit on the
volume fraction, while K represents the global stiff-
ness matrix. The interval [zi, z̄i] defines the lower and
upper bounds on the ith design variable.

Figure 1. Design region, boundary conditions, and
initial design for beam in 3−point in-plane bending.

The volume fraction, v, can be defined as

v(e) := 1∑
e

∣∣Ω(e)
∣∣ ∣∣∣Ω(e)

∣∣∣ ∑
b
ρeff

be . (11)

Finally, for the design-independent loading, the sensi-
tivity of Eq. (10) and Eq. (11) is as follows:

∂zic = −
∑

e
u⊤

(
∂ziK

(e)
)

u

∂ziv =
∑

e
∣∣Ω(e)

∣∣ ∂ziv
(e)∑

e
∣∣Ω(e)

∣∣ .

(12)

The stiffness matrices design sensitivities
Da, where {a = m, d, s} in Eq. (9) can be ex-
pressed in matrix form as follows:

∂ziDe =

 ∂ziDme 03 03×2
03 ∂ziDde 03×2

02×3 02×3 ∂ziDse

 . (13)

For the matrix 0n, it’s a zero matrix of size n× n,
and for 0m×n, it’s a zero matrix of size m× n. The
chain rule is used to compute the design sensitivity
of Eq. (13). This requires finding the derivative of
the transformation in Eq. (6) and the penalized effec-
tive density. The computation of these derivatives is
straightforward but has been left out for brevity. More
detailed information can be found elsewhere [10].

4. Examples
We consider bars made of CFRP; fiber orientation
is continuously aligned to the bar’s axis. Table 1
lists unidirectional carbon-epoxy AS4/3501-6 material
properties used for the bars.

The following settings are considered until men-
tioned otherwise. The method-of-moving-asymptotes
(MMA) [12] optimizer is used for the optimization rou-
tine, with the default parameters described in here [13].
The void material assigned with a Young’s modulus of
Evoid = 0.001 GPa and a Poisson’s ratio of vvoid = 0.3.
In the initial design (see Figure 1), bars have a radius
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Design Combined density

0

1

2

3

Table 2. Optimal designs and combined density for the MBB beam. The first column corresponds to the compliance
value obtained by design, i.e., c = 0.0905 kN · mm. In the second column, transparency is used in the color of the
bars for the GP-AM designs to help distinguish overlapping components. The color of the bars for the optimal
designs in the last column corresponds to their penalized membership variable value αq

b, and the bars are plotted
with transparency to facilitate the visualization of all bars.
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Figure 2. Objective (left) and volume constraint (right) history for the MBB beam design of Tab. 2 corresponding
to the GP-AM design.

equal to the average of their upper and lower bounds
during initialization. The sizing variable, α, is set to
0.5, and the move limit, m, is fixed and set to 0.02
throughout the optimization process.

The procedure of optimization entails three criteria
for stopping. The first criterion is achieved when the
2-norm of the alteration in the vector of design vari-
ables is smaller than 0.002. The second criterion is
attained when the KKT (Karush-Kuhn-Tucker) op-
timality condition norm is below 0.002. The third
criterion is fulfilled when the modification in the ob-
jective function is less than 10−9. The optimization
process is stopped if any of these criteria are met.

4.1. Beam in 3-point bending
The example considers a 150 mm × 50 mm simply sup-
ported beam in 3-point bending, as illustrated in
Figure 1. The maximum volume fraction is 0.5. Be-
cause the problem is symmetrical, only the right side
of the structure is modeled. Initially, the entire plate
is designed with 27 bar, and the design variables are
constrained within the following bounds.{ (0, 0)

2
0

}
≤

{ (xb1, xb2)
rb
αb

}
≤

{ (150, 50)
5
1

}
(14)

In this situation, the highest bending stress occurs
in the upper left corner where the load is applied,
and the normal stresses cause tension on the bottom
edge and compression on the top edge, with significant
shear stresses near the neutral axis. Additionally, the
optimal design for a single load application aligns bars’

fiber reinforcement axis with the principal stress at
each location [14].

In Table 2, it can be observed that there are hori-
zontal bars at the top and bottom edges to represent
the normal stress distribution, while inclined bars are
used for the shear stress distribution. The overlap-
ping bars contribute to a larger second-moment area
of inertia, resulting in higher bending stiffness, which
optimally supports the applied load. Furthermore, the
method proposed in this study yields an optimal solu-
tion comparable to the findings of other density-based
methods for the minimum compliance problem.

Figure 2 illustrates that the optimization process fol-
lows a usual convergence pattern for compliance; there
is a significant decrease in the initial iterations, accom-
panied by minor adjustments to the design variables in
the subsequent optimization iterations. Additionally,
it displays a standard smooth convergence behavior.

5. Conclusions
The numerical experiment results demonstrate the
effectiveness of the GP-AM in generating optimal so-
lutions for the minimum compliance problem. From
a manufacturing standpoint, the designs obtained with
the proposed methods are amenable to manufacturing
techniques for VSCL. Although not presented here for
brevity, the proposed method produces good designs
for several design regions, for example, problems: rect-
angular plate in pure torsion; cantilever beam under
in- and out-of-plane bending; and square membrane
in out-of-plane bending.
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