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Abstract. Several formulations of a nonlinear elastic behavior within the yield surface of the
selected advanced constitutive models are described and compared. Since concentrating on geotechnical
applications the accompanied numerical simulations are limited to basic laboratory tests such as
isotropic compression, oedometer, and drained triaxial compression. The results show a significant
influence of the size of the initial load step on final predictions particularly when starting from a very
low initial stiffness associated with the assumed zero initial stress. Differences in the predicted response
arising from different formulations are also discussed. These might be quite significant and the design
engineer should be aware of that when choosing a particular computational software.
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1. Introduction
Constructing underground structures in densely popu-
lated areas, preventing large scale landslides, as well as
being able to accurately simulate a complex response
of soils observed experimentally, opens the door to
the application of advanced constitutive models [1, 2].
Grounding on experimental evidence such models at-
tempt to address a nonlinear response of soils already
at initial stages of loading. An illustrative example
are the critical state models [1, 3] where the nonlinear
stress-strain behavior within the yield surface arises
naturally. A large group of formulations introduce
such a behavior in the spirit of Duncan and Chang
hyperbolic model [4–7]. While their appearance in
available commercial software is common [8–10] (to
cite a few), the details on their numerical implementa-
tion within a given constitutive model may differ. This
in turn may result in predictions, which are consider-
ably influenced by the initial load increment. In some
formulations, the load step dependence yields loading-
unloading curves which deviate even for loading condi-
tions that do not exceed the yield limit, often resulting
in an artificial residual strain. It is therefore crucial
to understand such potential drawbacks and the user
should be aware of that when creating the computa-
tional model for a given geotechnical construction.

The present paper revisits this issue in light of three
popular constitutive models implemented in the above
mentioned commercial codes. In particular, the Hard-
ening Soil Model [5, 6], the Generalized Cam clay
model [10, 11], and the Soft soil model [12] are exam-
ined in Section 2 with emphasis on the implementation

of the associated nonlinear elastic constitutive model.
The results of numerical simulations together with
a thorough discussion are presented in Section 3. All
calculations are carried out using the GEO5 FEM
software [10].

2. Advanced constitutive models
The present section provides details on the formulation
of nonlinear elasticity of the selected constitutive mod-
els, while the plasticity issues will be presented only
briefly with details available in the above mentioned
references.

2.1. Hardening soil model
The Hardening soil (HS) model developed in [5] and
later extended in [6] to account for small strain yield-
ing is plotted in Figure 1. As seen in Figure 1a it com-
bines two yield surfaces where the shear part, bounded
by a limiting yield surface of the Mohr-Coulomb type,
is derived on the assumption of the hyperbolic stress-
strain response in triaxial compression as depicted
in Figure 1c with ε1 being the major principal strain
and q representing an equivalent deviatoric stress mea-
sure. In the formulation implemented in GEO5 FEM,
both the shear yield surface and the cap yield surface,
which is assumed elliptic and centered at the origin of
the meridian plane, plot as a smooth hexagon in the
deviatoric plane in the spirit of the Matsuoka-Nakai
(MN) yield surface [13], see Figure 1b. The evolution
(hardening) of both surfaces is controlled by the cur-
rent value of the equivalent deviatoric plastic strain γ
and preconsolidation pressure pc, respectively.
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(a). Yield surface with zero cohesion in merid-
ian plane.

(b). Yield surface in deviatoric
plane.

(c). Response in triaxial compres-
sion.

Figure 1. Graphical representation of Hardening soil model.

(a). Yield surface in meridian plane. (b). Behavior under isotropic
compression.

(c). Elastic and plastic part
of total strain increment.

Figure 2. Graphical representation of Generalized Cam clay model.

The nonlinear elastic model due to Vermeer [14]
writes the elastic modulus Eur in the form of a power
law as a function of the current value of mean effective
stress σm as:

Eur(σm) = Eref
ur

(
σm − c cot φ

σref
m − c cot φ

)m

, (1)

where
Eref

ur , σref
m , m are model parameters,

c, φ are the shear strength parameters, the cohesion
and the angle of internal friction, respectively.

In particular, Eref
ur is the reference elastic modulus

for a reference stress σref
m typically equal to −100 kPa.

Note that the standard elasticity sign convention is
adopted with tension being positive. For simplicity,
we shall now consider the volumetric response only
and assume a linear variation of the mean stress σm

over a given load increment as:

σm = ησi
m + (1 − η)σi+1

m . (2)

Setting η = 1 gives fully explicit formulation (forward
Euler (FE) method, σm = σi

m in Equation (1)) while
η = 0 renders fully implicit (backward Euler (BE)
method, σm = σi+1

m in Equation (1)). Henceforth, the
former formulation will be referred to as the constant
elasticity (CE) return while the latter formulation will

be termed the variable elasticity (VE) return. Fur-
ther distinction is made by considering either secant
formulation in the form:

σi+1
m = Kur(σm(η))(εi

v + ∆εv), (3)

or incremental formulation provided by:

σi+1
m = σi

m + Kur(σm(η))∆εv, (4)

where Kur is the elastic bulk modulus given by:

Kur = Eur

3(1 − 2νur) . (5)

In particular, cases with η = 1 (FE), η = 0 (BE),
and so called mid-point rule (MP), i.e., η = 0.5 →
σm(η) = 0.5(σi

m+σi+1
m ), will be examined in Section 3.

2.2. Generalized Cam clay model
The Generalized Cam clay (GCC) model has been
introduced to reconcile the principal drawback of the
Modified Cam clay (MCC) model associated with
overestimating the shear strength and consequently an
excessive softening of highly overconsolidated soils. To
this end, the supercritical (dilation) part of the MCC
model was suitably adjusted, see Figure 2a, resulting
in the dependence on both the critical friction angle
φcs and peak friction angle φ via parameter β given
by:

β =
(

sin φ

sin φcs

3 − sin φcs

3 − sin φ

)2
. (6)
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Similar to the HS model, the MN yield surface repre-
sents the projection into a deviatoric plane.

The nonlinear elastic constitutive model derives
from the assumed response in isotropic compression
shown in Figures 2b and 2c. When moving along
the unloading-reloading κ-line the rate form of the
stress-strain law is provided by:

σ̇m = −σm

κ∗ ε̇el
v , κ∗ = κ

1 + e
, (7)

where
κ is called the swelling modulus,
e is the void ratio.
Integrating over a given time increment gives the
evolution of the mean effective stress in the form:

σi+1
m = σi

m exp
[

−∆εel
v

κ∗

]
. (8)

Next, writing the stress increment ∆σm as:

∆σm = σi+1
m − σi

m

= σi
m

(
exp

[
−∆εel

v

κ∗

]
− 1

)
= Ks∆εel

v ,
(9)

allows us to express the secant bulk modulus Ks as:

Ks = σi
m

exp
[
−∆εel

v

κ∗

]
− 1

∆εel
v

. (10)

The analysis may simplify if leaving the concept of
variable elasticity return represented by Equation (10)
and assume the bulk modulus:

Ki = −σi
m

κ∗ , (11)

to be constant over the load increment (constant elas-
ticity return), recall Equation (7).

2.3. Soft soil model
In the original MCC model the shear strength depends
solely on the slope of the critical state line g which
for the triaxial compression reads:

g = 2
√

3 sin φcs

3 − sin φcs
. (12)

Brinkgreve showed in [12] that it is not possible to
simulate both the oedometer stress path and full tri-
axial compression path with good accuracy using the
same value of g. This let to the formulation of a Soft
soil (SS) model combining the cap yield surface in
the form of MCC model to predict a correct K0-path
and the shear yield surface, here again assumed in the
form of MN model, to ensure a correct shear strength.
Such a yield surface is plotted in Figure 3 where Mc

for triaxial compression is given in terms of the coeffi-
cient of lateral earth pressure of normally consolidated

∙

Figure 3. Yield surface of Soft soil model in meridian
plane.

soils KNC
0 [12] whereas Ms follows from the solution

of nonlinear MN yield function [13].
While the shear yield surface represents a response

of an elastic perfectly plastic material, the cap yield
surface may undergo isotropic hardening. To avoid
potential softening within the cap model, which is not
allowed in the present implementation, the Mc-value
should be larger than the slope of the Matsuoka-Nakai
failure surface Ms.

Considering the nonlinear elastic response, we fol-
low the implementation in [8] and limit attention to
the constant elasticity return of Equation (11). As
suggested in [12] it is possible to relate Equation (11)
to Equation (1) by writing:

K(σm) = Kref
(

σm

σref
m

)m

. (13)

When setting m = 1, the logarithmic compression law
is recovered with:

1
κ∗ = −Kref

σref
m

. (14)

3. Simulation of simple laboratory
tests

Numerical simulation of three basic laboratory tests
is performed in this section to examine and compare
individual formulations presented in the previous sec-
tion. In all cases, the computational model consists
of two constant strain triangular elements. While
the oedometric test is run in plane strain regime, the
axisymmetric state of stress is assumed for isotropic
and triaxial compression. The loading and boundary
conditions are displayed in Figure 4 for individual
cases. All simulations assumed zero initial stress.

3.1. Hardening soil model
The response in isotropic compression and oedometer
is simulated to compare the secant and incremental
formulation represented by Equations (3) and (4). As
for Equation (2), only the cases with η = 0 (BE)
and η = 0.5 (MP) are tested. Although purely elastic
behavior is addressed, the nonzero values of c = 10 kPa
and φ = 30° are adopted together with Eref

ur = 30 MPa
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(a). Oedometer. (b). Isotropic compression. (c). Drained triaxial com-
pression.

Figure 4. Computational models of simple laboratory tests.
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(b). Comparing predictions provided by MP and BE
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Figure 5. Response of HS model in isotropic compression.

and σref
m = −100 kPa to set the initial stiffness of

Eur(σm = 0) according to Equation (1).
The results for isotropic compression appear in Fig-

ure 5. Point out that achieving convergence of the
underlying nonlinear equation with σm(η) provided
by Equations (2)–(4):

R = σi+1
m − σm(η), (15)

required a relatively small initial load increment. So
only a minor difference in the nonlinear elastic re-
sponse is observed for incremental formulation for the
tested load steps. On the other, the secant formula-
tion shows response, see Figure 5a, which is step size
independent. This conclusion is further supported via
results presented in Figure 6a. Point out that both
formulations adopt in the present study the same
model parameters in the calculation of Eur. However,
it is clear from Figure 5a that arriving at identical
predictions would require adjusting at minimum the
power law coefficient m for individual formulations
based on the experimental measurements.

Figure 5b compares the results associated with MP
and BE implementation of Equation (1) in the frame-
work of incremental formulation. It appears that MP
approach is less sensitive to the size of the loading

step. This approach is further promoted by predicting
an identical stress-strain curve in both loading and un-
loading if keeping the same load increment. Note that
such an approach is implemented in [8] and currently
also in [10].

The above discussion is fully supported by simu-
lating an oedometric test as seen in Figure 6. The
influence of the load step size, particularly for BE
approach, is clearly evident.

3.2. Comparing generalized Cam clay
and soft soil models

This section demonstrates potential differences be-
tween the variable elasticity approach, adopted with
GCC model, and the constant elasticity approach,
adopted with SS model, in light of incremental formu-
lation. The material data were set such as to arrive
at identical predictions in isotropic compression when
enforcing the constant elasticity return also with GCC
model. The material parameters used in all subse-
quent simulations are: κ∗ = 0.0094, λ∗ = 0.0678,
ν = 0.26 and g = Mc = 1.074. The initial value of
K0 = 1

κ∗ was considered.
Before proceeding with our discussion on individual

results it is worth mentioning that the GEO5 FEM
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(b). Comparing predictions provided by MP and BE im-
plementation of incremental formulation.

Figure 6. Response of HS model in oedometer.

software allows for gradually increasing the initial size
of the load step with a number of iterations needed
to achieve global equilibrium. In the present study,
the elastic simulations essentially adopted two times
larger step size with every new load step when this
option, denoted here as VS, was exploited. In this
case, the parameter step0, see e.g. Figure 7, represents
just the initial step being gradually increased in the
course of analysis. All other calculations considered
constant step size throughout the analysis.

Exposition to the derived results begins with Fig-
ure 7 to show the importance of a relatively small ini-
tial load step size to avoid excessive strains attributed
to initially very low stiffness.

The influence of stiffness variation over the load
increment (VE), Equation (10), in comparison to CE
return, Equation (11), appears for isotropic compres-
sion in Figure 8. Note that the ∗-lines require 10 steps
only in comparison to 100 and 1 000 steps associated
with red and blue simulations, respectively.

Promoting VE return over CE return might seem
justifiable when leaving purely elastic response and
allowing for plasticity as shown in Figure 8b where
simulations based on variable step size match those
with the constant step size in the case of VE rather
well.

Similar conclusions can be drawn from the results
in Figure 9 derived for oedometer. Figure 9a further
shows that, unlike the HS model, the assumed stiff-
ness evolution leads to artificial residual strains upon
complete unloading even in the case of pure elasticity,
which may become significant for larger load steps.
On the other hand, this issue will become less impor-
tant when loading the soil beyond its relatively low
elastic limit, because the generated permanent plastic
strains will then well exceed their elastic counterparts.

The last simulations are concerned with the plastic
response predicted by the GCC and SS models for
the drained triaxial compression test. As seen in Fig-
ure 10 the analysis begins with isotropic compression,
Figure 4b, when the specimen is first loaded to acquire
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Figure 7. Nonlinear elastic response of GCC model in
isotropic compression: influence of initial step size.

an initial pressure of 50 kPa. Clearly, no deviatoric
stresses are generated during this loading stage. The
evolution of deviatoric stresses begins with the second
stage of loading corresponding to triaxial compression,
Figure 4c. Note that the deviatoric stress measure J
is defined as the square root of the 2nd invariant of
deviatoric stresses sij as:

J =
√

1
2sijsij . (16)

Similarly to previous studies the CE predictions
linked to variable step size (VS) slightly deviate from
those obtained with the constant step size. This is
not the case for the approach based on VE return.
However, it is fair to mention, that smooth conver-
gence with VE required a slightly larger number of
iterations, thus a smaller load step size, in contrast to
CE return (star and diamond symbols identify individ-
ual load steps). Also note that for sufficiently small
load steps the difference between the two approaches
becomes insignificant.
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(a). Nonlinear elastic response.
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(b). Plastic response.

Figure 8. Comparing GCC and SS models in isotropic compression.
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0 0,1 0,2 0,3 0,4 0,5
0

100

200

300

400

500

gcc model (500 steps)

gcc model (VS, 11 steps)

ss model (500 stes)

ss model (VS, 9 steps)

K
0

= 1/κ∗
VS - variable step size)

-ε
3
[-]

-σ
3

[k
P

a]
V

er
tic

al
 s

tr
es

s

Vertical strain

(b). Plastic response.

Figure 9. Comparing GCC and SS models in oedometer.
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Figure 10. Comparing GCC and SS models in
drained triaxial compression.

4. Conclusion
The paper presented several illustrative examples via
simulations of simple laboratory tests to show dif-
ferences in the implementation of nonlinear elastic
constitutive laws arising in the formulation of three
particular advanced plasticity models.

It has been confirmed that the chosen method of
implementation may considerably affect the predicted
response. The user of a given commercial software
should be aware of that, since using the same model
in different softwares does not assure the same results.
Common to all examined models is their dependence
on the mean effective stress which may generate a very
low initial stiffness when starting from zero initial
stress. This in turn leads to excessive strains providing
the initial load steps are not sufficiently small. To
avoid a large number of loading steps to reach the
prescribed load the program GEO5 FEM allows for
a gradual increase of the initially small step size in
dependence on the number of iterations needed to
converge for the previous load increment.

It has also been observed that with the GCC and
SS models irreversible elastic strains occur as the stiff-
ness at the end of the loading and at the beginning
of unloading is different. On the other hand, this
issue does not seem to play a major role as the influ-
ence of irreversible elastic strains become negligible in
plastic analyses. In this regard, the approach based
on variable elasticity return provides response which
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seems less dependent on increasing the load step in
simulations adopting the variable step size (VS).

To conclude we remind that the GEO5 FEM soft-
ware, adopts, similar to [8], the incremental formu-
lation with MP approach for the HS model and the
concept of constant elasticity return for the SS model.
On the other hand, the MCC and GCC models employ
the variable elasticity return approach.
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