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ABSTRACT. Protecting vulnerable road users (VRUs) remains an issue despite significant advances in
the development of integrated safety, autonomous driving and cooperative environments. As part of
accident /collision processes, the urban area of municipalities continues to constitute a risk environment
with a relatively high frequency of serious injuries (VRU) even at relatively low speeds. In order to
understand and increase road safety, it is necessary to analyse the causes of traffic accidents in more
detail using video recordings, virtual reality (VR) and automated computer vision methods. The
state of the art in the Czech Republic is limited due to the absence of high-quality and extensive
data sets. This article constitutes a proof-of-concept solution for the digital reconstruction of selected
accident/collision events in 4 cities of the Republic, specifically in Prague, Liberec, Ceska Lipa and
Jaromér. It makes it easier to identify, parameterize and virtualize the results of a traffic conflict study
and can provide input data for the testing and validation of sensors, interaction models of road users’
behaviour, and preparation of scenarios for a simulated environment; ultimately it reinforces prevention
efforts.

KEYWORDS: Vulnerable road user (VRU), accident/collision events, road safety, virtual reality (VR),

photogrammetry, integrated rescue system (IRS), Czech Republic.

1. INTRODUCTION

Based on long-term cooperation in the development
of cars at Skoda Auto, involvement in preventive IRS
programmes and educational activities for primary
and secondary schools, we have decided to better un-
derstand the occurrence of traffic accidents involving
vulnerable road users (VRU) to map the state of the
art and subsequently to create a proof-of-concept solu-
tion for its detailed analysis. Using the tools of modern
technology, such as virtual reality, video analysis, pho-
togrammetry and laser scanning, we obtain a unique
insight that helps us understand and evaluate better
the key parameters of these adverse events in the con-
text of space and time. Their prevention/elimination
remains the key goal in the near future, especially
with the contribution of better proposals for sensory
functions, both of vehicles and cooperative transport
environments, as well as test scenarios as such and
more intensive/better preventive and educational ac-
tivities.

Data collection has been handled in the project
using public camera infrastructure, on-board vehicle
cameras, 3D laser scanners, cameras and UAVs. The
next step is the digital reconstruction itself, with
the final export to virtual reality and the subsequent
use of HMD technology to simulate and experience
a real accident in the digital world. In addition to

the methodological procedure of the solution, we have
created our own software application serving primarily
the IRS units. We have validated the procedures
suggested by use and their results by comparing them
with the commercial Virtual CRASH solution. The
Police of the Czech Republic has successfully adopted
our insights into its practice and nationwide trainings
of its members have been held to use the created tools.
In cooperation with the Czech Police and the Vision
0 platform, preventive actions using VR simulations
based on real traffic accidents are still ongoing. In the
future, we would like to upgrade our approach from
the proof of concept stage to a more robust application
in practice.

In the context of the entire work, it is also important
to mention the growing need to collect data from
accidents that not only have health consequences, but
also cause material damage [I]. Both WHO and EU
statistics [2 B] show that vulnerable road users (VRUs)
account for more than half of all road accident deaths.
In the EU, VRU collisions with a vehicle constitute
almost 70 % of the total number of fatal accidents in
urban areas.

Data from the Czech Republic have shown a sim-
ilar trend in the last decade [4]. VRUs generally
have a high degree of freedom of movement in an ur-
ban environment and tend to break traffic rules, thus
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showing a greater propensity for accidents and injuries.
There are even differences in the behaviour in different
cities [5H8]. The statistics show that achieving the
Vision 0 goal by 2050 will be difficult.

Despite huge progress in the field of integrated ve-
hicle safety and autonomous driving, collision-free
transit and interaction with VRUs in urban traffic
remains a challenge [9]. In any case, vulnerable users
often cannot avoid death or serious injuries in a col-
lision, even at relatively low speeds, when accident
events in urban areas occur. Recognizing VRUs is a
much more difficult task for a vehicle, e.g. as part of
the functions of the AEB system, than recognizing
other vehicles.

2. RESEARCH

Most cities are equipped with relatively large camera
surveillance systems. Such a developed network offers
the opportunity to use video analysis in many areas
dealing with traffic safety. There are currently not
a lot of research and data sets available in the Czech
Republic, which may create a gap due to the insuffi-
cient coverage of input data needs for the development
of advanced driver assistance systems (ADAS), Auto-
mated Vehicles (AVs) and cooperative environments.
Video analysis in the form of trajectories and speed
profiles provides a description of the behaviour of
individual road users at the micro level, which is a
key input for many applications, such as assessment
of the safety and efficiency of transport systems and
infrastructure, or calibration of behavioural models,
etc.

This is confirmed by the conclusions of the extensive
InDeV Horizon 2020 study [10]. The outputs of the
InDeV project, just like Ahmed et al. [11], describe
errors in police accident records that occur when mea-
suring the accident site, information on injury rates,
vehicles, roadway conditions and the specific environ-
ments. The described inaccuracies have a significant
impact on any analysis. At the end, the authors rec-
ommend greater use and development of a method
for studying traffic conflicts (e.g. Swedish Traffic Con-
flict Technique, DOCTOR — Dutch Objective Con-
flict Technique for Operation and Research) using
video analysis. Data obtained from vehicle on-board
cameras and infrastructure as one of the 4 pillars of
data sources [I2HIT7] are reported by the consortium
P.E.A.R.S. [18], which addresses the development of
the ISO standard for traffic safety assessment and
for active safety technologies integrated into vehicles
using virtual simulation. The reason for obtaining
additional input data for development, testing and
homologation is the fact that ADAS systems do not
cover 100 % of all scenarios, while AV system require
100 % coverage of ideally all possible real critical sce-
narios [19]. The verification of the functions of ADAS
systems vs. VRU in independent testing is described
in PEDICRASH and AAA tests and studies, the re-
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FIGURE 1. Ideal video analysis system.

sults of which show limited effectiveness on selected
complex scenarios [20] 21].

Real critical scenarios, situations and scenes require
high-quality digitization, with the interconnection of
driving data, and together with the application of
methods using surrogate measures of safety (SMoS),
they enable quick proactive solutions to understand
all the causal contexts of accident and near-accident
events.

The given environment of critical situations can
be reconstructed through scanning using multi-image
photogrammetry. The output is a cloud of points
that is used to create 3D models. The importance
in terms of accuracy and time savings of accident
site measurements with its subsequent virtualization
when using modern measurement techniques by the
police and forensic science is indicated, for example,
in the papers [22-24]. Other uses are reported, for
example, in papers in the field of research on traffic
flows [25] or road infrastructure safety [26] 27]. From
our own experience, we can mention the application
for in-depth research on the transport safety made
by teams such as UFO (VW), VDB (Skoda Auto),
AARU (Audi). Currently, some service departments
of the Transport Police of the Czech Republic already
use modern technology, such as UAV photogrammetry
and ground laser scanning.

Video analysis including kinematic data and trajec-
tories was used, for example, in research within the
PROSPECT project [28], a study from Vancouver,
British Columbia, focused on cyclists [29], or an anal-
ysis of pedestrian behaviour using walk parameters in
Nanjing, China [30].

An innovative approach to data collection was ap-
plied in the Ko-PER project containing data from
8 infrastructure cameras and 14 laser scanners. The
data contain sequences with object markings, object
classes and hundreds of road users [3I]. The ideal
video analysis processing workflow is described in Fig-

ure [Tl
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FIGURE 2. Comparison of tyre marks from distorted
and undistorted images.

FIGURE 3. Scheme of a synthetic calibration objects.

The detection of road users is dependent on the
complexity of the road traffic environment and is not
easy to handle, so it is in the interest of many stud-
ies [32H39]. The existence of publicly available data
sets and algorithms is important for the development
and testing of detectors [40H44].

A very important part of image analysis is rectifica-
tion; paper [45], for example, evaluates measurement
errors based on lens distortion and its impact on pho-
togrammetric measurement of the distorted image;
Figure [2| shows how the difference in tyre track mea-
surement can cause a difference in the final results of
the accident analysis.

Another study [46] addresses the measurement ac-
curacy affected by calibration with respect to the ratio
of area of the calibration object at the accident site or
the location of the calibration object using a cluster
of small flexible objects. Figure [3] shows a scheme of
calibration of the object from the calculation of the
homographic matrix H and Figure [4] shows a rectified
track image.

Another paper evaluates accuracy using the PC
Rect software, see Figure [5] [47].

Trajectory extraction - object tracking with their
detection has several approaches [48].

e Manual methods — the analyst will mark each partic-
ipant based on the specified frequency. The reason
for use compared to the automated method is high
accuracy, at the same time it does not address the is-
sue of possible occlusion [49], incorrect classification,
etc. [B0]. However, the extraction may be subject

FIGURE 4. Rectified image of traffic accident.
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FIGURE 5. PC Rect software.

to human error and the number of observations is
limited.

e Automated methods — they process the image to
identify and track moving objects in sequential video
frames. Compared to the manual method, auto-
mated methods are not time consuming and there
is no human error. It is possible to process a larger
volume of trajectories. The problem is the aforemen-
tioned occlusion, changes in light, the movement of
shadows or the movement of larger groups.

Many current studies deal with the monitoring and
prediction of VRU trajectories [50H53].

The basic approaches are shown in Figure [6]

The above procedures are applied to a wide range of
software tools developed for trajectory extraction. [53-
[60]. Most of the similar tools do not explicitly provide
for use by other analysts.

Speed measurement There are many different
approaches to calculating speed with the application
of different methods according to the purpose of the
research [6I]. For example, the method applied in the
Prospect project ensured results among the derived
trajectories with a relative accuracy of 0.5-1m [62].
Another study [63] at low speeds applies the cross
ratio method from projective geometry with o 1.3 %
and A 1.5%.

Another article in the field of forensic science pro-
poses a method of estimating the speed of a vehicle in
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FI1GURE 6. Basic approaches to VRU trajectory pre-
diction.

FIGURE 7. T-Analyst.

a video using a virtual plane and a virtual reference
line (VSEM) [64]. The following article suggests re-
constructing accidents from CCTV recordings using
volumetric kinetic mapping (VKM) [65].

For an overview, we present freely available software
applications available from websites with the function
of trajectory extraction from video recordings [66].

T-Analyst This is a database solution that makes
it possible to select conflicts according to classification.
It contains tools for placing predefined shapes (models)
in the image, to extract trajectories or derive the speed
of the monitored subjects/objects at a certain time
(see in Figure[7).

RUBA (Road User Behaviour Analysis) The
basis of the approach is a set of detectors that can
be connected by logical rules. They are activated by
movement and they highlight conflict situations in
red. Under favourable conditions, it is possible to
remove up to 90 % of the original footage that does
not contain relevant information (see in Figure .

Traffic Intelligence project It provides a set of
tools for the detection, tracking and classification
of road users using a tracking algorithm mapping
trajectory data and individual interactions (see in

Figure E[)
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FIGURE 8. RUBA.

FIGURE 9. Traffic Intelligence project.

Ficure 10. STRUDL.

STRUDL: Surveillance Tracking Using Deep
Learning This approach is used as part of the In-
DeV project under Horizon 2020 as an open-source
and free framework for videos captured by stationary
cameras. It uses an object detector using deep learn-
ing to track and trace movement in the scene (see in

Figure .

SafeCross It describes an open-source framework
for proactive risk assessment of individual accidents.
Cyclist detection and tracking is done automatically
using advanced computer vision techniques and deep
learning (see in Figure .

Last but not least, the use of virtual reality is be-
coming increasingly important for examining critical
scenarios. Especially in behavioural research involving
HMI. For example, article [67] represents empirical re-
search evaluating different HMI concepts of behaviour
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FIGURE 12. Interactions in situations with multiple
pedestrians.

F1cURE 13. The test process.

for two pedestrians, see Figure Or study [68] deal-
ing with decision-making processes when crossing the
road in VRU vs. inbound vehicle interactions. The
process of the test can be seen in Figure

3. METHOD

Our way of looking at road safety in terms of pre-
venting road accidents is unusual, and thus brings
a unique point of view on the whole issue. The cre-
ated proof of concept called virtual accident experi-
ence for real survival uses digital reconstruction of
real accident event(s) all the way to the final use of
HMD technology. In addition to the methodological
procedure, we have created a software application
written in Python, designed specifically for the Czech
Police. The reason for our own In-house solution is
the unavailability of SW licences for programmes to be
commonly used by the units of the integrated rescue
system. We attach a comparison of the conventional
Virtual CRASH method with our method at the end

of the chapter; at the same time it serves a validation
function. By attaching a roadmap of reconstructed
real (near-)accidents, we demonstrate the application
in practice. Specifically, this covers the following loca-
tions in the Czech Republic: Prague, Liberec, Ceska
Lipa, and Jaromér.

3.1. METHODOLOGICAL APPROACH

The methodology for evaluating the 2D movement of
an object is based on the image analysis of a recording
from a single camera. This is a simple analysis, where
the first prerequisite is the movement of the object
on the horizontal XY plane. The effect of the Z-axis
(bottom-up direction) is not taken into account. The
advantage of the whole approach is its use even if we
only know the top view of the situation, the bird’s
eye view/aerial view. For evaluation purposes, only
an image from publicly available sources of various
map materials, e.g. google.com/maps or mapy.cz,
is sufficient. However, these data are burdened by
distortion caused by their acquisition at angles of up
to 30°. Therefore, for the subsequent refinement of
the results, we supplement the map data set with
laser scanning of the area; this step will give us the
benefits of a real orthographic map. The accuracy of
the measurement reaches the maximum uncertainty in
units of centimetres, typically up to 2cm on an area
of 600 m2. The quality of the orthographic map can
be exported in high resolution. The basic information
for evaluation also includes the sampling frequency of
the camera or video recording (FPS). The quality of
the images is also influenced by the resolution of the
camera, the lens used and the lighting conditions. The
resolution of the orthophoto map, in other words the
size of the scale — the ratio of the number of pixels to
distances [pix. m™!], can also be considered a decisive
influence. When using scanner measurement, we can
achieve hundreds to thousands of pixels per metre.
The methodology is usable for both static and dy-
namic (on-board) camera recordings. The principle of
evaluation is based on the search for optical pairs of
points (places) that are identical for the video record-
ing and the orthophoto map. These points introduce
a dimension into the image (there must be a sufficient
number of them to achieve better results), which is
defined by the orthophoto map. It is advisable to
have the distribution of control points in the image
especially in those places where the objects of inter-
est move. The control points must be positioned on
the XY plane to maintain clarity between the 2D
orthomap and the image. Specifically, these are un-
ambiguous contrasting elements, such as corners at
pedestrian crossings, footings of traffic signs, curb
joints, etc. Since the influence of perspective is not
linear, it is advisable to place control points in both
directions of the image. The impact of perspective
on the results is then significant. We achieve the best
results in the case of a record taken from a bird’s eye
view, similar to an orthographic one. On the contrary,
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in the case of shooting from a small (low) angle, the
quality of the results is reduced; this is the case of an
on-board camera, where the angle between the pad
and the object is relatively small. The next step is
to monitor the movement of the object itself in the
image — object tracking. Due to the aforementioned
limitation of movement on the XY plane, it is neces-
sary to mark the tracked object at a place as close
as possible to this plane, e.g., the point of contact of
the tyre with the road. Tracking is performed manu-
ally on selected key frames (for reasons of accuracy);
the timeline is defined by the sampling rate (FPS).
The 2D coordinates obtained in this way in the video
recording are converted into their equivalents in the
2D orthophoto map using linear interpolation. The
obtained 2D motion coordinates are interlaced with
a second-order polynomial across three points, due
to smooth transitions between individual key frames.
This gives us a two-dimensional description of the
movement of objects in space — their position, speed
and direction. The on-board record is evaluated with
the difference that the above procedure is applied
to each frame, or rather a suitable frame, in which
control points can be defined with certainty. This
eliminates the need to determine the position of the
object, because this is the position of the camera itself.
The results are influenced by the optical parameters
of the camera itself (focal length of the lens and frame
size = FOV).

3.2. CREATED SOFTWARE APPLICATION

When developing the software tool, we referred to the
methodology described in Section further dividing
it into 3 consecutive phases, shown in Figures
and [I6] For a clear illustration, we attach a practi-
cal reconstruction of one of the locations — Jaromér
(shown in Figures

This deals with the measurement of an accident
site — ortho plan, from the accident site survey using
more ground or aerial photogrammetry. The aim is to
convert the marked tracks into 2D coordinates in scale
using manual input and automatic detection based
on the set parameters in the image. The format of
the text output is compatible with the processes and
technical equipment of the police used for subsequent
completion of the report on the traffic accident. The
application was optimized and subsequently tested.

Implementation of an application for measuring
track coordinates in a 2D orthophoto plan using au-
tomatic detection has brought the following function-
alities (the output is an executable version of the
application that has been tested):

e Import of the requested ortho plan,
e Manual entry of track position,

e Automatic track detector using a defined search
area, including parameter settings for detection
(colour, threshold, gradient),

e Scale definition,
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o Definition of the initial point of measurement,

e Orientation of the coordinate system using two
points,

e Option to edit the description and annotation of
each defined track,

e Option to group multiple defined points into one
track,

e Option to introduce GPS 2D coordinates using
a TXT file,

e Export of coordinates into a text file and a 2D ortho
plan of the scene.

It includes the implementation of an application for
dynamic analysis of the course of a traffic accident.
The tool makes it possible to use both stationary and
on-board camera recordings. The result is a visual
interpretation of the trajectory of the traffic accident
participants, including information on their speeds.
The application and the implementation of annota-
tions were tested again. At the same time, a methodol-
ogy for defining primitives for the automatic creation
of virtual reality was proposed and approved.

In addition, the ortho plan of the traffic accident
scene was supplemented with the trajectories and
speeds of the traffic accident participants. This allows
us to bring important information and a completely
new or different view of the specific traffic accident. It
also provides data for the “live” virtual reality scene.
As part of the implementation of an application for
dynamic analysis of a traffic accident using a single
camera, the following objectives have been achieved:

e Import of AVI, MP4 or MOV video,

¢ Basic video editing — selection of the area of interest
(video clipping),

e Definition of pairs of points designed to evaluate
the position in space using known coordinates from
the ortho plan,

e Definition of objects and their points,
e Tracking of points in time,

e Evaluation of 2D coordinates of points and objects
depending on time,

e Export of coordinates into a text file,

e Export into a 2D ortho plan of the traffic accident
scene.

Export intended for visualizations in a virtual scene.

It includes the development and implementation of
an application for automatic creation of a 3D scene
of the traffic accident scene based on an orthophoto
map supplemented with primitives. The application
and the implementation of annotations were tested.
Creation of methodological materials for all 3 phases.
Application for measuring track coordinates in a 2D
orthophoto plan using automatic detection and appli-
cation of video analysis of the accident event record.
An application has been implemented for automatic
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FIGURE 14. Phase 1 — Measuring tracks
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in the application
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quality
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image.

Export of the dynamic
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The generated preview with graphical
information on the measured objects is
shown in the Report section.

The name of the object and its current
speed are shown.

The export is intended to transfer the
project to the 3rd stage — virtual
accident experience.

A text file is generated with measured
values and description of movement of
the measured objects.

FIGURE 15. Phase 2 — Dynamic analysis of movement
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3rd point specifies the direction.

Current dynamic objects = have a tracked
path form 2nd phase.

If the object is at a key point, the parameters
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FIGURE 16. Phase 3 — Creating virtual reality (VR)
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FIGURE 21. Creating a 3D virtual scene.
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FIGURE 23. Vehicle view in the VR scene.

creation of a 3D scene of the traffic accident scene
based on an orthophoto map supplemented with prim-
itives. Anonymized video outputs from virtual reality.

As part of the implementation of the application,
the planned objectives have been achieved:

e Retrieval of the entered objects from the XML
source and additional information,

o Setting of the loaded objects to the specified posi-
tion and the required rotation,

e Editing of the basic shape of the specified objects
based on the control curves,

o Setting of the tracks and speeds of moving objects,

¢ Loading of specified tracking points, both in space
and tied to moving objects,

e Setting of the scene background and lighting,

e Creation of control and information systems and
means for previewing the scene.

Example results can be seen in Figures [24] and
which depict a reconstructed situation from Liberec,
Malé namésti. Subsequently, validation of the ob-
tained results was carried out on another dataset
from Praha, Smetanovo nabrezi, as illustrated in Fig-

ures and

3.3. VALIDATION OF RESULTS FROM PRAHA,
SMETANOVO NABREZI

4. DISCUSSION

The quality of the results is influenced by a number
of factors, which are: camera/recording resolution,
lens distortion and its type, angle of view of the scene,
direction and size of the object’s movement relative to
the rotation of the frame (effect of perspective), record-
ing sampling rate (FPS) and its stability, contrast
between the monitored object and the environment,
number of control points, quality of the orthophoto
map (number of pix. m~!), video codec used. Each of
these factors will more or less influence the result.

From the point of view of a fundamental improve-
ment of the results of the methodology it would be
advisable to:

e To perform a lens calibration to compensate for
image distortion,

e More effective placement of control points through-
out the image. Ideally a regular grid with a size of
e.g. 2 x2m,

o Digitize the entire area of interest in order to obtain
3D data. Then define control points directly in the
3D space,

e Use the Z-axis information (3D data) to evaluate
the position of the object,

e Try to avoid obscuring significant points in the
image (camera position relative to static objects in
the camera frame),

o Interleave tracked points using more complex al-
gorithms — 3rd order polynomial using 5 or more
points, etc.

5. CONCLUSSION

We have achieved the planned results of the devel-
opment of a software tool and methodology for the
processing of marked tracks from the scene of a traffic
accident, taken with multi-image ground or air pho-
togrammetry, 3D scanning, or other methods whose
output is an ortho plan (rectified photographic image).
The SW application makes it possible to create scenes
for virtual reality based on data sets from real traffic
accidents. Our effort has also been to identify factors
affecting the quality of output data for the needs of
safety and efficiency of transport systems, infrastruc-
ture or calibration of behavioural models (HMI). At
the same time, nationwide training of representatives
of the Transport Police and the Czech Police Head-
quarters has taken place in 14 regions in the use of
the software tool and methodology for processing the
location of a traffic accident, as well as nationwide
training of representatives of the Communication and
External Relations Department of the Czech Police
Headquarters in the use of the software application
and methodology for automatic creation of a 3D scene
of the traffic accident based on an orthophoto map
supplemented with primitives. In cooperation with
the Czech Police and the Vision 0 platform, preven-
tive actions using VR simulations based on real traffic
accidents are still ongoing.

Finally, the paper has presented the verification of
a method to obtain parameters such as speed and dis-
tance at a certain time, thus enabling the acquisition
of SMO identifiers even when using a lower-quality
video recording.

6. FUTURE WORK

A follow-up study of traffic conflicts will be carried
out using appropriate camera systems. The examined
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FIGURE 24. Dynamic motion analysis results.

FIGURE 25. Digital reconstruction (left) and simulation in Unity and VR (right).
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FIGURE 26. Accident analysis — video record.
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FIGURE 27. Accident analysis — conventional method.
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FIGURE 28. Accident analysis — methods comparison.

critical situations will include primarily collisions, po-
tential collisions and traffic conflicts between pedes-
trians and vehicles, secondarily between pedestrians
and cyclists, cyclists and vehicles, e-scooter riders, e-
micromobility users, and other road users. A holistic
approach will be applied to the acquired video data
set to detect VRU intentions using cooperative meth-
ods. Intention detection will consist of basic primitive
motion prediction, e.g. standing, moving or rotating.
The subsequent trajectory estimate will be evaluated
and categorized. This will be preceded by the selec-
tion of a suitable detection algorithm based on the DL
architecture or a combination using the Bayesian BDL
probability with the application of e.g. Fast-RCNN,
R-FCN, Faster R-CNN, YOLOv5 or SSD.

Most accidents are due to human error. Therefore,
it is advisable to add in the future a system view
of the communication interface between the operator
(driver) and the artificial system (vehicle, its parts).
This will be achieved by using knowledge from the
Driving Simulations Research Group at CTU, devel-
oping interactive vehicle simulators, scenario genera-

tion technologies and experiments using appropriate
methods. Instruments working with psychophysical
measures, advanced analytical and classification tools
can add extra value to the results [69H7S].
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