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Abstract.
Sleep constitutes an essential aspect of human existence, with the average individual dedicating

approximately one-third of their life to this physiological activity. Consequently, comprehending and
accurately analyzing sleep patterns is of paramount importance. This research aims to introduce,
formulate, execute, and assess diverse machine/deep learning methodologies tailored for the processing
of EEG signals geared explicitly towards identifying sleep spindles. The learning algorithms underwent
training using meticulously annotated data from the Montreal Archive of Sleep Studies (MASS) data
center. The convolutional neural network emerged as the most effective classification model, achieving
an accuracy surpassing 67%.

Keywords: Deep learning, EEG data standards, EEG workflows, EEG pipelines, electroencephalog-
raphy, event-related potentials, human brain, machine learning.

1. Introduction
Sleep, comprising approximately one-third of human
life, is crucial for bodily rejuvenation and mental relax-
ation. However, the prevalence of sleeping disorders in
modern society underscores the significance of research
in this domain to enhance sleep quality.

The brain’s activity undergoes distinct changes dur-
ing sleep, categorized into REM and non-REM phases;
a specific phenomenon within the non-REM phase is
known as a sleep spindle. Sleep spindles are brief
bursts of neural oscillatory activity during non-REM
sleep and play a crucial role in memory consolidation.
These spindle events are essential indicators of sleep
quality and cognitive functions.
Electroencephalography (EEG), the fundamental

method and technique for measuring and collecting
electrical activity of the human brain, is also used in
sleep data collection; their abundance and complexity
necessitate further computer processing. This miti-
gates human error and promotes more efficient and
accurate data analysis.

Machine and deep learning, particularly neural net-
works such as Convolutional Neural Networks (CNN),
Long Short-Term Memory Networks (LSTM), and
Dense Networks, offer a promising approach to EEG
signal and sleep data processing.
This paper focuses on identifying sleep spindles.

This is accomplished by designing, implementing, and
assessing deep learning methods (neural networks).
The general aim is to improve understanding and inter-
pretation of EEG data, contribute to advancements in
automated sleep analysis, and enhance our knowledge
of sleep-related phenomena.
The paper is organized in the following way. The

state-of-the-art section provides insight into EEG and

sleep stages classification, sleep spindle characteristics,
and sleep data platforms and archives. It is followed
by the sections describing the dataset and neural net-
work architectures used. Then, the dataset processing
is presented, and the results are provided. The out-
comes and future perspectives are summarized in the
conclusion section.

2. State of the art
The typical use case in EEG signal classification is
to compare methods for categorizing preictal, postic-
tal, and interictal classes when epileptic seizures are
detected. The model proposed in [1] integrated a two-
layer LSTM and a four-layer enhanced neural net-
work (NN) deep learning architecture using improved
one-dimensional gradient descent activation functions.
The study used the pre-processed Bonn University
database; statistical features were extracted. Con-
ventional methods used for the classification included
Support Vector machines (SVM) with different ker-
nels, logistic regression, and NNs. The results showed
that the improved NN algorithm achieved the highest
accuracy (nearly 79%), surpassing LSTM (71%), NN
neural network (61%), and SVM (70%), while logistic
regression had the lowest accuracy (about 53%) [1].
In collaboration with the Department of Medi-

cal Engineering and Technomathematics in Germany,
Aachen University of Applied Sciences used a machine
learning approach [2] to score pre-REM sleep stages
in mice automatically. Using a dataset of polysomno-
graphic recordings from 18 mice over 52 days, the
study investigated the impact of dietary variation on
sleep. The mice, chronically implanted with EEG
and EMG electrodes, underwent data pre-processing,
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including low-pass filtering and synthetic data aug-
mentation for a balanced training set. The neural
network architecture, consisting of eight convolutional
layers and a classifier with two fully connected layers,
demonstrated high accuracy in classifying Wake, REM,
and NREM segments, achieving over 98%, more than
94%, and close to 92% accuracy, respectively. The
pre-REM stage was correctly classified in 58% of the
segments. The classifier showed robust performance,
correctly predicting human-expert assigned stages for
segments predicted to be Wake, REM, and NREM,
demonstrating the effectiveness of the network in the
automated classification of sleep stages in mice [2].
A 1D CNN-LSTM algorithm for automatic sleep

staging (Wake, REM, Non-REM) on the Sleep-EDF
dataset, achieving 93.47% accuracy with the Fpz-Cz
EEG channel, is described in [3]. The dataset com-
prises 197 PolySomnoGraphic sleep recordings with
manually scored hypnograms. With seven layers (four
1D CNN and three LSTM layers), the algorithm ex-
hibited robust performance across various physiologi-
cal signals. Evaluations on single-channel EEG and
EOG classifications, using five test sets for each group,
confirmed the model’s reliability. Achieving 94.15%
accuracy when incorporating Fpz-Cz EEG and EOG
signals, the algorithm demonstrates promise for auto-
mated sleep staging in future sleep-related research.
It offers an efficient alternative to manual expert in-
spection in large-scale Polysomnography (PSG) signal
analysis, showcasing the effectiveness of deep learning
in discerning similar sleep periods [3].
Figure 1 displays a characteristic sleep spindle ev-

ident in the EEG waveform during non-rapid eye
movement (non-REM) sleep. This spindle, observed
in frontal and central brain regions, manifests as a brief
burst of rhythmic oscillations lasting 0.5 to 2 seconds,
with frequencies ranging from 11 to 16Hz. The figure
provides a visual representation of the spatial and
temporal dynamics of the sleep spindle, contributing
to the understanding of its electrographic features.
Recognized for its role in memory consolidation, the
accurate identification and analysis of sleep spindles,
as illustrated in Figure 1, are crucial for investigating
sleep disorders and neurological conditions, enhancing
comprehension of neural activities during sleep. Due
to its characteristic properties, it is suitable for test-
ing processing techniques like machine learning and
neural networks further to refine the detection and
interpretation of sleep spindles.

The Massive online data annotation (MODA) plat-
form is pivotal in generating standardized datasets
for training and validating automated detectors of
biological signals, including EEG [5]. A Canadian
study using MODA compared the results of expert,
researcher, and non-expert scorers with seven spin-
dle detection algorithms, revealing that only two al-
gorithms performed comparably to human experts,
showcasing MODA’s significance in benchmarking au-
tomated sleep analysis methods.

Figure 1. Example of EEG sleep spindles; adopted
from [4].

The Montreal Archive of Sleep Studies (MASS) also
serves as an open-access repository, providing PSG
data for benchmarking automated sleep analysis sys-
tems [6]. Established as part of the MODA project [5],
MASS is a comprehensive and openly accessible repos-
itory of PSG recordings with annotated EEG signals,
supporting large-scale collaborations in sleep stud-
ies [6]. The MAAS database is structured into cohorts,
with subsets categorizing recordings based on specific
characteristics [6].

3. Sleep Spindles Dataset
This study used EEG data from the MASS archive’s
stage SS2 (described in Table 1). The data preparation
of EEG recordings involves addressing challenges such
as the unique occurrence of sleep spindles in specific
sleep segments, constituting about two percent of the
overall recording. Given this imbalance, set balancing
is crucial for effective neural network training. The
measured voltage values in the EEG signal range from
10−4 to 10−6 Volts, necessitating normalization. The
EEG records from only the Pz-CLE channel were
further processed, as this channel provides optimal
visibility for sleep spindles. The EEG records were
subdivided into smaller segments for neural network
processing; each segment was further divided into sets
using annotations. The dataset’s imbalance, where
segments without spindles make up about ninety-eight
percent of the dataset, is reduced using a Python
random number generator for unbiased set balancing,
avoiding pattern-based distortions during training.

4. Neural network architectures
This section briefly overviews the methods (neural
network architectures) employed for the automated
detection of sleep spindles in the dataset described
above. Furthermore, these architectures were comple-
mented by their combinations, with the anticipation
of preserving the advantages and properties inherent
in each architecture.

4.1. Dense Neural Network
The Dense Neural Network (DNN) depicted in Fig-
ure 2, also known as a fully connected neural network,
exhibits a structure where each node in one layer
connects to every node in the next. This dense con-
nectivity allows comprehensive EEG signal processing
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Stage 2 (SS2)
Memory size 7.26GB
Total number of measurements 19
Total number of spindles 11204
Average number of spindles in a measurement 217
Time length 151 h
Maximum number of spindles in a measurement 569
Minimum number of spindles in a measurement 86
Maximum duration of spindle 2.218605 s
Minimum duration of spindle 0.335915 s
Average length of an EEG measurement 7 h 59min

Table 1. Characteristics of stage SS2.

Figure 2. An example of a standard dense neural
network. The network has one input, two hidden, and
one output layer, adopted from [7].

and feature extraction, enabling the network to cap-
ture intricate data relationships. DNNs are widely
applied in domains such as image recognition, natu-
ral language processing, and signal processing due to
their ability to learn complex patterns from extensive
datasets.

4.2. CNN
The Convolutional Neural Network (CNN) illustrated
in Figure 3 is a specialized class of artificial neural
networks designed for processing structured grid data,
particularly effective for tasks involving image analysis
and recognition. With distinctive architectural ele-
ments, including convolutional layers, pooling layers,
and fully connected layers, CNNs excel at captur-
ing hierarchical features and spatial hierarchies in
input data. Convolutional layers use filters to con-
volve across input data, extracting local features and
patterns. Pooling layers reduce spatial dimensions,
preserving crucial information while minimizing com-
putational complexity. Fully connected layers enable
high-level abstraction and decision-making. CNNs
demonstrate notable efficacy in applications like image
classification, object detection, and facial recognition,
underscoring their significance in computer vision and
pattern recognition research.

Figure 3. An example of an application of filter on
an image inside a CNN network, adopted from [8].

4.3. LSTM
The Long Short-Term Memory (LSTM) neural net-
work, a specialized recurrent neural network (RNN)
architecture, addresses the challenge of capturing long-
range dependencies in sequential data by incorpo-
rating memory cells with input, forget, and output
gates, making these networks particularly suitable for
tasks involving memory and temporal patterns. The
gates selectively control information flow, allowing
the network to retain relevant context over extended
sequences and mitigating the vanishing gradient prob-
lem. LSTMs excel in natural language processing,
speech recognition, and time series analysis, effec-
tively capturing temporal dependencies. Their role in
mitigating the vanishing gradient problem has posi-
tioned LSTMs as a cornerstone in developing advanced
deep-learning models for sequential data processing,
contributing to diverse areas of artificial intelligence
research. The network architecture is depicted in Fig-
ure 4, showcasing its capability to detect specific EEG
signals.

5. Dataset Processing
The current research incorporates three prominent
neural network architectures discussed above: DNN,
LSTM, and CNN. The strategic use of these archi-
tectures underscores a sophisticated approach to ad-
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Figure 4. LSTM neural network scheme, adopted
from [9].

dressing the complexities associated with sleep spindle
detection in research studies.
The DNN architecture was the primary choice for

sleep spindle dataset processing; it provides a basic
model for initial exploration and understanding of the
dataset. The LSTM architecture has been incorpo-
rated to process the data further. The inclusion of
LSTMs is motivated by their ability to detect subtle
signals that precede the occurrence of sleep spindles.
To enhance the data processing capabilities, the

CNN was introduced into the architecture. In the con-
text of sleep spindle detection, treating EEG data as
an image allows CNNs to capture hierarchical features
and spatial hierarchies efficiently. The convolutional
layers in CNNs facilitate extracting local features and
patterns, contributing to a comprehensive understand-
ing of the dataset.
Various combinations of DNN, LSTM, and CNN

architectures provide a diverse and comprehensive ap-
proach to the data processing to improve sleep spindle
detection algorithms; we chose the following simple
architectures: LSTM, Dense, CNN and CNN and
their combinations of architecture: CNN-LSTM im-
plemented in Keras python package and CNN-LSTM
implemented in Torch python package.
The proposed CNN-LSTM implemented in Keras

package architecture is shown in Figure 5. It consists
of seven layers, with the initial four layers character-
ized by convolutional structures, each having 32 neu-
rons. Following the non-convolutional layer is a linear
layer with 384 neurons, introducing a deeper level of
abstraction. Subsequently, the penultimate layer is
also linear, incorporating 64 neurons. Ultimately, the
final layer consists of two neurons.

5.1. Validation dataset
The validation dataset encompasses nearly 200,000
instances, with 51.2% attributed to non-sleep spin-
dles, and the remaining instances dedicated to sleep
spindles. This meticulously constructed dataset is
a subset derived from the extensive data repository
provided by the Montreal Archive of Sleep Studies

(MASS) center. The deliberate balance between the
two classes ensures a representative and unbiased sam-
ple for thorough evaluation, fostering the reliability
and generalizability of the neural network’s perfor-
mance assessment.

The training and testing of the neural network archi-
tectures has been performed on a normalized data set.
The parameters for the neural networks, such as the
size of the input layer and the number of epochs, were
determined using genetic algorithms. The number of
epochs varies for each architecture.
The last method used to process the sleep spindle

dataset, the value-based method, is a simple analytic
method. Its principle is that it sums the measured
values on a specific interval and compares the resulting
values with each other. For this method, it is crucial
to set the border correctly.
At the outset of the algorithm, the border was

initialized to zero. Subsequently, the EEG signal un-
derwent segmentation, with each segment consistently
comprising 64 measured values. The absolute sum
of all values within the segment was computed and
compared against the border. If the computed value
exceeded the border threshold, the segment was anno-
tated as a sleep spindle. The algorithm then tallied
the number of correctly and incorrectly classified seg-
ments, following which the border was incrementally
adjusted by a small increment. The optimal thresh-
old value for classification was determined as the one
yielding the highest number of correctly identified
spindles.

6. Results
Table 2 summarizes the results obtained from testing
various classifiers and their combinations. Also the
Figure 6 shows peak accuracies achieved by the used
classifiers.

Network architecture Accuracy
Dense 64.63%
LSTM 52.81%
CNN 60.87%
CNN-LSTM in Keras 52.81%
CNN-LSTM in Torch 67.15%
Value-based method 64.12%

Table 2. Best results provided by the used classifiers.

Figures 7 and 8 present the accuracy and loss func-
tion values corresponding to the optimal neural net-
work configuration evaluated on the validation dataset.
Both figures are structured with the number of the
validation set epochs delineated on the x-axis, visually
representing the network’s performance metrics across
multiple epochs.
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Figure 5. The CNN-LSTM architecture implemented in Torch package. The dropout layer prevents getting stuck in
the local minimum; Flatten links CNN and the Linear layer.

Figure 6. The best classification results (peak accu-
racies) achieved by the used classifiers.

7. Conclusion
The paper examines the processing of EEG signals dur-
ing sleep to identify sleep spindles using mostly various
simple and hybrid neural network architectures. The
study used data from the recognized MASS archive.
The used dataset was balanced, divided into training
and testing sets, and used to train neural networks.
The classification accuracy of LSTM and LSTM-CNN
networks was the lowest at 52.81%. Keras’ Dense and
CNN networks showed slightly better results with an
accuracy of 60–65%. The most successful network was
the CNN network implemented in the Torch package,
achieving accuracy exceeding 67%.

Figure 7. The accuracy on the validation dataset; X-
axis = number of epochs over the validation dataset;
Y -axis = the accuracy value.

The achieved classification results are consistent
with those reported in the literature, where the best
results for EEG sleeep artifact classification reached
70–75%. The value-based method achieved an accu-
racy of 64.12%, slightly below the state-of-the-art.

It may be worth refining the neural network parame-
ters by extending the state area of input parameters to
improve performance. Also, the potential benefits of
the next alternative hybrid deep learning architectures
in identifying sleep spindles can be considered.
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Figure 8. The loss function on the validation dataset;
X-axis = number of epochs over the validation dataset;
Y -axis = the loss value.
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