
https://doi.org/10.14311/APP.2024.51.0109
Acta Polytechnica CTU Proceedings 51:109–113, 2024 © 2024 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

COMPLEX SYSTEM TESTING BASED ON API

Milan Sliacky∗, Lukáš Kacar

Czech Technical University in Prague, Faculty of Transportation Sciences, Department of Transport Telematics,
Konviktská 20, 110 00 Prague 1, Czech Republic

∗ corresponding author: sliacky@fd.cvut.cz

Abstract. The article describes the practical experience of testing a specific ticketing system for
public transport based on blockchain technology. The testing aimed to verify the overall functionality
of the complex system as well as the correct execution of the functions of its selected parts, which
consist of several separately developed but closely cooperating subsystems: blockchain, clearing, and
mobile application subsystem with support of bank payment system.

Communication between the different parts was implemented through APIs developed for this
purpose. The availability of API documentation and the implementation on Linux OS allowed the use
of sophisticated tools for testing and performing both manual and automated tests. Performed tests
made it possible to detect errors in the program code of the respective components and to provide
the basis for their elimination. Applied approaches and tools can be used to test similar complex
information-handling systems.

Keywords: API, ticketing, public transport, blockchain, clearing, mobile application, functional test,
stress test.

1. Introduction
Although the origins of blockchain technology date
back to the 90s of the 20th century, it is a relatively
new technology whose more massive use, unless we
count cryptocurrencies, can only be observed in recent
years. This technology is gradually finding applica-
tions in various areas of human life [1]. Public trans-
port is also becoming one of these areas, specifically
in passenger ticketing systems.

Blockchain has important features that distinguish
it from the technologies used in this field. Blockchain
is distributed, which means the data can be stored in
different parts of the public transport system, i.e., on
the carrier’s premises and in the means of transport.
It is decentralized, which has a positive impact on
the security and reliability of the system in the sense
of data loss [2]. Data is protected against tamper-
ing; this is a native feature of blockchain. It contains
a distributed state database that is convenient for
recording ticketing data (e-wallet status, loyalty pro-
gram status, ticket purchase transactions, etc.). It
is optionally encrypted, which means security in the
sense of data protection against theft.

However, deploying blockchain in this field also
brings some risks, such as the insufficient transaction
processing speed caused by technological limits. At
the same time, sufficient speed is essential for passen-
ger check-in.

2. Solution used
There are a variety of blockchain implementations.
The so-called industrial blockchain was used in the
project, namely Hyperledger Fabric [3].

Maste rnode
Master node

Master node

Micro node Micro node

Maste rnode

Figure 1. Principal blockchain scheme.

A common blockchain system consists of several
nodes and uses several channels [3]. This project used
two types of nodes: master node and micro node. The
principal blockchain scheme is shown in Figure 1. The
master node is fully functional and implemented as
a server with a fixed location. The micro node has re-
duced functionality and is located in the vehicle. Each
micro node processes transactions from its vehicle and
can work online and offline. The blockchain payment
system was designed with four channels: electronic
wallet, tickets, loyalty system, and whitelist/blacklist
(for compatibility with existing systems, where the
blacklist contains a list of prohibited transport cards,
and the whitelist includes a list of products linked to
the passenger identifier). The blockchain subsystem
was integrated with two other systems: the clearing

109

https://doi.org/10.14311/APP.2024.51.0109
https://creativecommons.org/licenses/by/4.0/
https://www.cvut.cz/en


Milan Sliacky, Lukáš Kacar Acta Polytechnica CTU Proceedings

IPTS 
clearing 
system

Backup payment
method

EMV payment gateway

Mobile app
Backoffice

PSD2
Third party

Bank

Master
node

Master 
node

Micro
node

Micro
node

IP
TS

 c
oo

rd
in

at
orPa
ym

en
ts

ys
te

m
s

Master 
node

Mobile 
application

Supporting systems

View loyalty
points
statusLegend:

Internal API
API used for testing

Card
reader

Blockchain

BLOCKCHAIN PAYMENT SYSTEM

Figure 2. Blockchain payment system and supporting systems.

and mobile application subsystem. There were also
supporting systems (see Figure 2) for payment.

3. System analysis
To propose a suitable testing methodology, an analysis
of the blockchain payment system was first carried
out to identify key properties for testing. The clear-
ing subsystem and mobile application subsystem were
also found to be important. The key features identi-
fied are as follows. The physical architecture of the
whole system consists of several separate stand-alone
subsystems. Information exchange (system collabo-
ration) takes place through the APIs. All APIs are
documented. Some functions (realized by separate
units, like micro node and mobile app) must work
correctly offline, without interaction with other sub-
systems. The primary function of the blockchain
payment system is the registration of ticketing data
(electronic wallet records, ticket records, loyalty sys-
tem and whitelist/blacklist). Internal communication
of the subsystems used was not subject to testing
(and documentation was not provided for the testing
team).

Based on the results of the analysis, research was
conducted on how the industrial blockchain system
works and how functional, security, and stress tests
of complex systems connected via API interfaces are
performed. Security tests are not the subject of this
article.

4. Methodology
First, the reasons and objectives of the functional
tests were assessed [4]. Functional tests verify the
correctness and reliability of all declared functions
of the whole system. The stress tests are similar to

functional tests but under high load. Because we
knew a detailed description of how the system and its
parts should work, we could have used the so-called
white-box testing [5].

A high system load can be obtained by quickly
generating transactions at the selected system inputs,
generating many offline transactions, and then switch-
ing online, generating transactions at a high load
ensured in some other way or by a combination of the
above methods.

Functional and stress tests were performed manu-
ally or in automated mode. The correctness of the
GUI design was tested manually. Specifically, control
logic and control layout were tested. Furthermore, the
correctness of the response to the specified inputs was
verified. The response also depends on the internal
states of the system. The result was much like what
you would get from an automated testing tool. Still,
humans have more flexibility than automated tools,
so they can follow much more complicated instruc-
tions [5]. A well-known disadvantage of manual tests
is the limited number of tested combinations at the
system inputs and the time-consuming nature of the
tests. There is also a higher probability of random
error caused by the human factor.

Automated tests allow the detection of random er-
rors (they occur for certain combinations of inputs
and internal states only). They allow testing many
combinations of external and internal system states.
The identified advantage of the automated testing
implementation is the existence of APIs and the avail-
ability of their documentation. The following APIs
were used for testing purposes: to card reader (CR
API), to clearing (CLR API), to blockchain node
(BLO-API), to blockchain gateway (GW-API), and
back office of mobile app (DpAPI). All existing inter-

110



vol. 51/2024 Complex system testing based on API

DpApi

Mobile
application CLR API

Backoffice MA

DpApi

GW API

Clearing

CR Api
Card


Reader

CLR API

GW API

DpApi

Virtual device

(Postman)


BLO API BLO API

Blockchain

master node

CLR API

Blockchain

micro node

CLR API

Blockchain

micro node

BLO API

BLO API

Blockchain

master node

BLO API

Blockchain

master node

DpApi

Web portal

PSD2

internal API

internal API

Web interface
(Swagger)


CLR API

Figure 3. APIs available for functional and stress tests.

faces are shown in Figure 3. The blockchain native
API (BLO API) is used for communication between
individual nodes and was not used for testing.

The following freely available SW tools were used
to implement manual and automated tests: Postman
(mainly for manual API testing), Notepad++ (a useful
tool for analyzing data records), and Swagger (if it
has been implemented within the API).

Within the physical architecture, the micro node
was implemented in two versions: industrial PC with
Debian operating system and Raspberry Pi 4 mi-
crocomputer with Raspbian operating system (De-
bian clone). The Linux-based operating system en-
abled specific tools to run automated tests, such as
Python programming language (scripts with loops),
bash scripts, and Cron job scheduler for scheduled
and/or periodic script execution.

5. Implementation of tests
The tests were conducted in a laboratory trans-
port ticketing environment according to the existing
methodology [6]. To verify the correct execution of the
tested functions, it was first necessary to determine
the use cases or tasks the system should perform and
which should be tested. Within each use case, the
processes taking place on the system were described
in detail. Tested tasks are:

1) purchase a ticket in the mobile app,
2a) purchase a ticket via a transport card,
2b) top-up virtual e-wallet in the mobile app, and
3) draw loyalty points.
Based on the process analysis of the defined use

cases, the following functions and features were vali-

dated. On the clearing subsystem, it was the correct-
ness of generated/recorded values of transactions on
relevant equipment (micro nodes, mobile app). On the
blockchain subsystem, they were the loyalty program
history, e-wallet transactions history, and transaction
record of the ticket purchase. On HMI at all relevant
parts of the system under test, it was the correctness
of displayed values.

Quality testing can only be done for automated
tests where a sufficient number of retrieved values are
available. Such tests were successfully carried out for
automated ticket purchases on both types of micro
nodes, as well as automated e-valet recharges via clear-
ing API. The following parameters were evaluated:
transaction success rate (TSR) [7]

TSR =
total number of successful transactions
total number of attempted transactions

· 100, (1)

and average, minimum, and maximum test execution
time, median, and variance. Average test execution
time is, with some simplification, equal to an average
transaction duration or an average latency [8].

Each use case was tested separately. The execution
of the task means the communication of selected parts
of the system through the appropriate APIs. For
example, purchasing a ticket in the mobile app (MA)
means the communication of the mobile application
with its back office, PSD2, clearing, and blockchain
subsystem using the following APIs: DpAPI, Internal
API, CLR API, GW API, and BLO API (see Figure 3).
For incorrect test results, finding the place of the error
in the system (typically an error in the API design)
was necessary.

111



Milan Sliacky, Lukáš Kacar Acta Polytechnica CTU Proceedings

6. Test results
The testing was carried out according to the design,
and many errors were revealed in most of the tested
subsystems (blockchain payment system, clearing, and
mobile app subsystem) in the form of a pilot plant.
Next, we list the main errors found during functional
testing.

When testing task 1 – purchase a ticket in the mobile
app, a timestamp error in bonus program history
recorded in the blockchain subsystem was detected.
Furthermore, missing information was found in the
sent records (transport card ID and transaction ID
missing), which made it impossible to trace these
transactions in the blockchain database.

In task 2a – purchase a ticket via a transport card,
a similar timestamp error in bonus program history
was detected. Furthermore, randomly generated du-
plicate transactions were detected in both the clearing
and blockchain subsystems. These duplicate transac-
tions occurred very rarely – an average of 1 wrong
transaction in 1888 correct ones. Manual tests proba-
bly wouldn’t have caught this bug.

In task 2b – recharge the virtual e-wallet in the
mobile app, wrong timestamp entries in the e-wallet
history recorded in the blockchain subsystem were
detected. Furthermore, wrong values in the recharge
transaction records (balance and previous state of
the e-wallet) were detected in the clearing subsystem
records.

In task 3 – drawing loyalty points, the transaction
records in the blockchain loyalty program database
had the wrong timestamp – the same as mentioned
above.

Automated tests made it possible to evaluate a qual-
itative point of view. In task 2a – purchase a ticket via
script simulated transport card use, the automated
tests were performed for micro node 1 resp. 2 in
two stages of system development. The first tests
showed the transaction success rate equal to 80.2 %
resp. 80.0 % with the average transaction duration
(latency) equal to 4.82 s resp. 3.67 s. The final tests
indicated the transaction success rate equal to 99,73 %
resp. 99.97 % with an average transaction duration
of 1.28 s resp. 1.76 s. During the integration work
of the system using the results of testing, there was
a significant improvement in the system parameters.
Compared to [8], there is still a possibility of improv-
ing efficiency.

From the stress tests conducted, it appears that if
the blockchain system is overloaded, the transactions
on the micro node will go offline, which is a desir-
able feature. The number of erroneous transactions
generated on the side of the micro node and average
transaction duration (latency) increased with a higher
load on the blockchain system.

7. Test results settlement
All the findings and shortcomings were incorporated
into the corrections and modifications of the system

under development, and the system was optimized.
The tests demonstrated load resistance, fault toler-
ance, and practical operational sustainability. The
technical and substantive merits of the project were
verified in a semi-operational manner, and the opera-
tion was flawless within the specified test period. As
a result of the project, a system has been built and
is ready for deployment in routine operation. It is
a system design that will enable mass production of
similar systems for use in transport.

8. Conclusions
Testing complex systems consisting of several subsys-
tems connected through interfaces using APIs entails
the need to use a whole range of different types of
testing, especially in the case of functional and stress
tests. Manual tests are insufficient to verify the system
before commissioning, as they do not allow captur-
ing erroneous transactions with a low frequency of
occurrence (less than one error transaction per tens
to hundreds of correct transactions). Automated tests
providing a large number of recorded values are very
useful. Test automation can be done in different ways.
It is necessary to use the options provided by the
tested system flexibly.

Since both types of micro nodes ran on a Linux OS,
the advantages of the Linux operating system, such
as scripting languages or the Cron job scheduler, were
used in the testing design to generate transactions.
Another way to automatically generate many specific
transactions was using APIs. Thanks to the documen-
tation provided, this option could be used. Various
specialized tools allow you to generate transactions
directly through the API.

In addition to capturing random errors, another ad-
vantage of automated tests is obtaining enough data
from which it is possible to calculate performance char-
acteristics. Finally, we must also mention Notepad++,
which has proven to be useful when analyzing large
logs (with thousands of rows).

The described approach is suitable for testing other
complex systems based on computer technology, e.g.,
vehicle simulators, where several independent subsys-
tems cooperate, and communication between them
is realized via API. All relevant APIs must be docu-
mented. An operational system based on Linux is an
advantage but not a mandatory prerequisite.

Acknowledgements
All the activities described above were car-
ried out as part of the R&D project, ID:
CZ.01.1.02/0.0/0.0/20_321/0024952. The project was
supported by the operational program OPPIK, managed
by the Ministry of Industry and Trade of the Czech
Republic. The main research companies of the project
were Aemis, s.r.o. and BUSINESS Systems a.s. Czech
Technical University in Prague, Faculty of Transportation
Sciences, through its Transport Ticketing and Information
Systems Laboratory, carried out the testing activity as a
subcontract within the implementation of the project.

112



vol. 51/2024 Complex system testing based on API

References
[1] M. del Castillo. Blockchain 50: billion dollar babies,

2019. [2024-02-11]. https:
//www.forbes.com/sites/michaeldelcastillo/2019/
04/16/blockchain-50-billion-dollar-babies/?sh=
10d4292557cc

[2] S. Roy, M. Ashaduzzaman, M. Hassan, A. R.
Chowdhury. BlockChain for IoT security and
management: Current prospects, challenges and future
directions. In 2018 5th International Conference on
Networking, Systems and Security (NSysS), pp. 1–9.
2018. https://doi.org/10.1109/NSysS.2018.8631365

[3] Linux Foundation. Blockchain network. [2024-02-14].
https://hyperledger-fabric.readthedocs.io/en/
release-1.4/network/network.html

[4] R. Stasonis. How to implement functional test in an
automated environment, DDM Consulting Services Inc,
USA, 1999. [2024-02-12]. https://www.ddmconsulting.
com/Design_Guides/functest.pdf

[5] R. Stephens. Chapter 13 – Testing. In Beginning
Software Engineering, pp. 327–358. 2022. ISBN
978-1-119-90170-9.

[6] M. Svítek, J. Borka, M. Sliacky, et al. The
methodology for verifying the interoperability of fare
collection and information systems in public transport,
CTU in Prague, Prague, 2015. [2024-02-12].
http://ois.fd.cvut.cz/dokumenty/metodika_
overovani_interoperability_ois.pdf

[7] S. Mercan, E. Erdin, K. Akkaya. Improving transaction
success rate in cryptocurrency payment channel networks.
Computer Communications 166:196–207, 2021.
https://doi.org/10.1016/j.comcom.2020.12.009

[8] E. Androulaki, A. Barger, V. Bortnikov, et al.
Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, pp. 1–15. Association
for Computing Machinery, New York, NY, USA, 2018.
https://doi.org/10.1145/3190508.3190538

113

https://www.forbes.com/sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-babies/?sh=10d4292557cc
https://www.forbes.com/sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-babies/?sh=10d4292557cc
https://www.forbes.com/sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-babies/?sh=10d4292557cc
https://www.forbes.com/sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-babies/?sh=10d4292557cc
https://doi.org/10.1109/NSysS.2018.8631365
https://hyperledger-fabric.readthedocs.io/en/release-1.4/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/network/network.html
https://www.ddmconsulting.com/Design_Guides/functest.pdf
https://www.ddmconsulting.com/Design_Guides/functest.pdf
http://ois.fd.cvut.cz/dokumenty/metodika_overovani_interoperability_ois.pdf
http://ois.fd.cvut.cz/dokumenty/metodika_overovani_interoperability_ois.pdf
https://doi.org/10.1016/j.comcom.2020.12.009
https://doi.org/10.1145/3190508.3190538

	Acta Polytechnica CTU Proceedings 51:109–113, 2024
	1 Introduction
	2 Solution used
	3 System analysis
	4 Methodology
	5 Implementation of tests
	6 Test results
	7 Test results settlement
	8 Conclusions
	Acknowledgements
	References

