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Abstract

The Pierre Auger Observatory has been designed to investigate the origin and nature of the ultra high energy cosmic rays

using a hybrid detection technique. A review of selected results is presented, with the emphasis given to the measurement

of energy spectrum, mass composition and arrival directions.
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1 Introduction

Understanding the sources, nature and propagation
properties of the cosmic rays at ultra high energies
(E > 10'8 eV) is one of the key questions in astroparti-
cle physics. From the experimental point of view, their
study can be performed indirectly, by exploiting the Ex-
tensive Air Showers they produce by interacting with
the nuclei in the Earth atmosphere.

Among the different features characterizing the spectral
shape, the region between ~ 108 —10'° eV is thought to
host the transition from galactic to extragalactic cosmic
rays. Different models explain it as due to e*/e™ pair
production of protons with the photons of the cosmic
microwave background (CMB) [1], or more tradition-
ally to the intersection of a steep galactic component
and the onset of a flatter extragalactic one [2].

At even higher energies, above ~ 4 10'? eV, a cut-off
in the cosmic ray flux is expected, due to photo-pion
production of extragalactic protons in the CMB (the
"GZK cut-off” [3]) , although the same feature could
arise when reaching the limits in the maximum energy
of the sources.

However, the all particle spectrum cannot provide a dis-
crimination among the different hypotheses, and the de-
termination of the primary composition is mandatory
to reach any reliable conclusion. The analysis of the
arrival directions and their anisotropy can give further
insight into the sources and provide information about
the magnetic fields which the ultra high energy (UHE)
cosmic rays experience during their travel to Earth.
The Pierre Auger Observatory has been specifically de-
signed to investigate the origin and the nature of ultra
high energy cosmic rays. It is located in Malargiie, Ar-

gentina, and consists of a surface array (SD) of 1660 wa-
ter Cherenkov stations on an area of ~ 3000 km?, over-
looked by 27 air fluorescence telescopes (FD) grouped
in four sites [4]. Thanks to the possibility of combin-
ing the information from the surface array, measuring
the lateral distributions of secondary particles at the
ground, and the fluorescence telescopes, observing the
longitudinal profile, the reconstruction capabilities are
enhanced with respect to the individual detector com-
ponents.

2 The Energy Spectrum

The energy spectrum above 2.5 10'® eV has been de-
termined using the data from the SD [5], considering
only events up to 60°. The exposure is obtained by in-
tegrating the number of active stations over time; the
overall acceptance uncertainty is ~ 3% [6]. The energy
calibration is derived directly from data, using a subset
of high quality hybrid events, i.e. events reconstructed
by both the FD and the SD [7]. Despite the low duty
cycle of the FD, the energy spectrum could be extended
to 10'8 eV using hybrid events, thanks to the good en-
ergy resolution and low threshold, thus investigating
the transition region in detail [8]. The total systematic
uncertainty in the energy scale is about 22%, the main
contribution coming from the uncertainty in the fluo-
rescence yield (14%) and in the reconstruction of the
longitudinal profile (10%).

The SD and hybrid spectra can be combined using a
maximum likelihood method, since both have the same
systematic uncertainties in the energy scale. The nor-
malization uncertainties are on the contrary indepen-
dent and have been used as additional constraints in the
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procedure. The resulting spectrum is shown in Fig.1; a
fit with three power laws is shown by the dashed lines,
while the solid line indicates the result of a fit with two
power laws and a smooth function. The ankle feature is
present at an energy of 10'8:62 eV; the cutoff is clearly
seen with a significance of 20 ¢. Different astrophysi-
cal models can be compared to our data; however, the
energy spectrum can be described by both a heavy or
proton composition at the highest energies and the in-
formation must be complemented by independent mea-
surements of the primary composition.
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Figure 1: The combined Auger energy spectrum.

Only statistical uncertainties are shown. The system-
atic uncertainty on the energy scale is 22%.

A comparison of the Auger results with data from
HiRes, Telescope Array and Yakutsk has been recently
performed [9]. The various fluxes can be rescaled as-
suming that any difference among them be due solely to
energy scale and not to aperture calculations or energy
resolution. The differences found are entirely consistent
with the systematic energy uncertainties quoted by the
experiments.

3 The Nature of the Primaries

The most direct information about composition can be
obtained by measuring the longitudinal development of
showers in hybrid events, thus determining the mean
depth of maximum development, X,,.., and its fluc-
tuation, RMS(X,n4.). For each event, X4, depends
on the depth of first interaction of the primary in the
atmosphere and on the subsequent development of the
shower; for this reason, the interpretation of the results
in terms of composition is complicated by the uncer-
tainties in the hadronic interaction models used in sim-
ulations.

About six years of hybrid data have been analyzed ap-
plying FD quality cuts and ensuring that no bias with

respect to the cosmic ray composition is introduced in
the data sample [10]. Having been corrected for the
detector resolution, the X,,,, and its fluctuations are
detector independent and can be directly compared to
the predictions of different models, as shown in Fig.2.
Both observables show a change for E > 5 10'® eV
towards an increasingly heavy composition in compari-
son to the model predictions. The average resolution of
Xomaz == 20 g/cm? in the considered energy range.
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Figure 2: < X4, > and RM S(X,,4.) as a function
of energy, compared with the predictions of air shower
simulations using different hadronic interaction models.

In general, different values for RMS(X ;) are al-
lowed for different combinations of elements [11]. The
fluctuations predicted by the considered hadronic inter-
action models and shown in Fig.2 are evaluated only for
pure compositions .

A different conclusion, leading to a light composition
up to the highest energies, has been drawn from the
data of the HiRes and Telescope Array. However, a di-
rect comparison of their results with the Auger ones is
not possible, as the detector biases are included in their
simulation. Furthermore, their dataset is smaller that
that of Auger. A lenghty discussion about this compar-
ison can be found in [12] (and refs. therein).

Starting from an extension of the Heitler model of ex-
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tensive air showers [13], a method for interpreting the
results of X4, and RM S(X ) in terms of mass com-
position has been developed. As discussed in [14], X440
is only function of the mean logarithmic mass < In A >,
and as such it carries information on the average com-
position. On the contrary, both the shower-to-shower
fluctuations and the dispersion in the mass distribution
contribute to RMS(X4,). This information can be
used to extract the < InA > and its variance from the
observables and to build the plots shown in Fig.3, where
the size of the data points increases with increasing en-
ergy.

The energy evolution of the composition is common to
all models; reduced systematic uncertainties will allow
in the future to test or even exclude some of them.
Different consequences from the astrophysical point of
view can be derived from this comparison.
Extragalactic sources of protons seem to be disfavored
by our composition result, within the uncertainties on
the hadronic interaction models used to interpret the
data. In a propagation scenario, nuclei from nearby
sources could produce small mass dispersion at Earth,
as propagation would not be able to degrade mass and
energy. If on the other hand the proton component
is depleted by the reach of a rigidity dependent end
of the injection spectrum, and if sources are uniformly
distributed, hard injection spectra with low energy cut-
off, together with local sources, could explain the data
[15, 16].
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Figure 3: The Pierre Auger data in the (< InA >
,0? 4) plane for different hadronic interaction models.
Grey contours limit the allowed region, the systematic
uncertainties are shown by the black lines.

4 Primary Photons and Neutrinos

UHE primary photons and neutrinos can provide in-
valuable information about the astrophysics of cosmic
rays. Their detection would be a direct proof of the
GZK cutoff; limits on exotic models [17] and tests for
new physics [18] could be obtained from a positive or
negative result on their detection. In both cases, their
search is based on the characteristic features of the
showers they produce in comparison to the hadronic
ones.

Primary photons produce late developing showers, a
characteristic further enhanced by the LPM effect [19].
The deeper X,,q., Observable by the FD, is associated
to a more dispersed distribution of the arrival time of
the particles at ground level. At a given distance from
the shower axis, the arrival time of the first particles is
delayed with respect to a planar shower front and the
radius of curvature is thus expected to decrease for pho-
ton induced showers. These observables can be recorded
by means of the SD.

The upper limits derived from both the SD and the hy-
brid data collected by Auger are shown in Fig.4 and dis-
cussed in [20, 21]. Astrophysical scenarios are favoured
with respect to top-down models.
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Figure 4: Upper limits on the integral photon flux.
Different expectations are shown for comparison.

Primary neutrinos can produce showers character-
ized by a significant electromagnetic component; the
huge hadronic background can be eliminated by look-
ing at large zenith angles. v, can interact by charged
current in the Earth crust, producing Earth-skimming
upward-going showers; neutrinos of any flavour can in-
teract in the atmosphere by neutral or charged current
giving rise to downward-going events. Assuming a dif-
fuse neutrino flux ~ k £~2, 90% CL limits on their flux
are obtained, as shown in Fig.5.

Neutrinos from point sources were also searched for,
over a broad declination range (north of ~ —65° and
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south of ~ 55°), for E, > 10'7 eV. For a differential
neutrino flux ~ kpg E~2, 90% CL limits of ~ 5 - 1077

and 2.5 -107% GeV cm™2 s~! have been obtained for
up-going and down-going events respectively [22].
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Figure 5: Differential and integrated upper limits
on the single flavour E~2 v flux (thin black lines:
downward-going v, thick red line: Earth-skimming v).

Different models are shown for comparison and dis-
cussed in [23]

5 Anisotropies

The spatial distribution of the arrival directions of UHE
cosmic rays as a function of energy is a key observable
to provide information about their sources and nature,
complementary to those of energy spectrum and com-
position. Particles of UHE are most probably extra-
galactic, and if the observed cutoff in the spectrum can
be attributed to the GZK propagation effect we could
expect their sources to be confined in our courtyard,
within about 100 Mpc.

In 2007 [24] the Auger Collaboration reported the ob-
servation of a correlation between the arrival directions
of the highest energy cosmic rays and the positions
of nearby AGN from the Véron-Cetty-Véron catalogue
[25]. The result came from an analysis of indipendent
data with a priori parameters determined from an ex-
ploratory scan; this allowed to avoid the use of penalty
factors which would be needed in a posteriori analyses.
The most recent update of this search is shown in Fig.6
[26]: the fraction of correlating cosmic rays is (33 +5)%
(28 events correlating out of a total of 84). The proba-
bility of this correlation to occur by chance if the true
distribution of arrival directions is isotropic stays below
1%. The independent averages of 10 consecutive events
are also shown (black dots).

A recent comparison of our result with the Telescope
Array and the Yakutsk ones showed that the correlat-
ing fractions are compatible [27]. More data are nec-
essary to show whether this correlation is statistically
significant or not.
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Figure 6: The correlating fraction as a function of
the total number of time-ordered events. Different con-
fidence levels are shown, together with the isotropy
value p=0.21 and the current estimate of all data,
Pdata = 0.33 £ 0.05.

Another possible scenario is that the anisotropy is
dominated by cosmic rays originating from the vicin-
ity of Centaurus A, the nearest active galaxy with an
estimated distance of about 3.8 Mpc, since 19 events
out of 7.6 expected have arrival directions within 24°
of CenA. A Kolmogorov-Smirnov test shows that the
chance probability for this to happen is 4%. Direction-
ally aligned events, or "multiplets”, can be expected
from the same source after deflection in the magnetic
fields, showing a correlation between the arrival direc-
tion and the inverse of energy. The largest multiplet
found was one 12-plet, but also in this case the prob-
ability for it to come from an isotropic distribution is
~ 6% [28].

Potential sources of galactic cosmic rays have been
looked for by performing a blind search for neutron
primaries [29]. In fact, due to the relativistic time di-
latation the UHE neutron mean decay length is (9.2 x
E/EeV) kpc; above 2 EeV, neutron emitters can be
searched for in the whole Galaxy. Auger can detect
neutron showers by a simple search for an excess of
proton-like showers from a specific direction in the sky.
No candidates have been found, bringing to a median
flux upper limit of 0.0114 n km~2 yr~! above 1 EeV.
The absence of a neutron flux from the Galaxy, which
could be expected in the hypothesis of sources steadily
emitting protons and neutrons with similar luminosity,
could be a hint that the sources at EeV energy could
be e.g. extragalactic, transient or weak but densely dis-
tributed.

The large scale distribution of the arrival directions of
cosmic rays is another fundamental tool in the search
for their origin. The results from a study performed
using data from the SD array are shown in Fig.7 [30].
No significant anisotropies are observed, resulting in the
most stringent bounds on the first harmonic amplitude
above 2.5 1017 eV.
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Figure 7: FEquatorial dipole component (top) and
phase of the first harmonic (bottom) as a function of
energy.

The obtained limits already exclude some of the
galactic models (labeled in Fig.7 with A and S, indi-
cating antisymmetric and symmetric galactic magnetic
fields), according to which the cosmic rays at these en-
ergies are galactic and can escape by diffusion and drift
motion. In the model labeled Gal, cosmic rays are as-
sumed to be galactic at all energies, and the anisotropy
is due to purely diffusive motion caused by the turbu-
lent component of the galacic magnetic field. In extra-
galactic models, the transition is put at the second knee
and the cosmic rays large scale distribution is influenced
by the relative motion of the observer with respect to
the frame of the source. Assuming that the frame in
which the cosmic ray distribution at these energies is
isotropic is coincident with the cosmic microwave back-
ground rest frame, a small anisotropy (the extragalactic
Compton-Getting effect, labeled C-G Xgal) is expected.
Interestingly, the phase of the first harmonic shows a
smooth transition between a common phase of ~ 270°
below 1 EeV and ~ 100° above 5 EeV. A consistency
of the phase in ordered energy intervals can indeed be
expected in presence of a real underlying anisotropy,
standing out of the background more prominently than
the amplitude. However, no confidence level can for the
moment be assigned to this result, being an ”a posteri-

ori” observation.

The study of the large scale anisotropy has been per-
formed for the first time with Auger data as a function
of both the right ascension and the declination and ex-
pressed in terms of dipole and quadrupole amplitudes
[31].

No significant deviations from isotropy are detected.
Under the hypothesis that any anisotropy is dominated
by these moments, the 99% CL upper limits can be
derived, as shown in Fig.8.
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Figure 8: 99% CL upper limits on the dipole and
quadrupole momenta as a function of energy.

As an example of the power of the measurement to
discriminate among different astrophysical models, the
experimental limits are compared in the figure with the
expectations from a toy model, in which the sources
of protons and iron are stationary and uniformly dis-
tributed in the galactic disk. Being the expected ampli-
tudes for protons largely above the allowed upper limits,
we can exclude this scenario for the light component of
EeV primary cosmic rays.

6 Future Developments

The Pierre Auger Observatory has reached a cumu-
lative exposure of more than 26000 km2sr yr. New
information about the characteristics of the primary
cosmic rays have been derived, opening at the same
time more questions and pointing to the need of an
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extension of the life time of Auger.

The measurement of composition of the primary par-
ticles from the EeV region up to the highest energies
has emerged as the key for hitting the hottest scientific
questions: a) understand the origin of flux suppression
discussed in Sect.2, if due to the reach of the maxi-
mum energy at injection or to the GZK effect (a clear
signature of which would be the observation of a flux
of primary photons and neutrinos); b) perform com-
position driven anisotropy searches; ¢) determine the
energy at which the transition from galactic to extra-
galactic sources of cosmic rays takes place.
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