
278

Acta Polytechnica CTU Proceedings 1(1): 278–282, 2014

278

doi: 10.14311/APP.2014.01.0278

HAVmS: Highly Available Virtual Machine Computer System Fault
Tolerant with Automatic Failback and Close to Zero Downtime

Memmo Federici1, Carlo Gaibisso2, Bruno L. Martino3

1Istituto di Astrofisica e Planetologia Spaziali, INAF IAPS Via fosso del Cavaliere 100, 00133 Roma, Italy
2Istituto di Analisi dei Sistemi ed Informatica ”Antonio Ruberti”, IASI-CNR Viale Manzoni 30, 00185 Roma , Italy
3Associated INAF IAPS

Corresponding author: memmo.federici@iaps.inaf.it

Abstract

In scientific computing, systems often manage computations that require continuous acquisition of of satellite data and

the management of large databases, as well as the execution of analysis software and simulation models (e.g. Monte Carlo

or molecular dynamics cell simulations) which may require several weeks of continuous run. These systems, consequently,

should ensure the continuity of operation even in case of serious faults. HAVmS (High Availability Virtual machine

System) is a highly available, ”fault tolerant” system with zero downtime in case of fault. It is based on the use of

Virtual Machines and implemented by two servers with similar characteristics. HAVmS, thanks to the developed software

solutions, is unique in its kind since it automatically failbacks once faults have been fixed. The system has been designed

to be used both with professional or inexpensive hardware and supports the simultaneous execution of multiple services

such as: web, mail, computing and administrative services, uninterrupted computing, data base management. Finally the

system is cost effective adopting exclusively open source solutions, is easily manageable and for general use.

Keywords: HAVmS - high availability - fault tolerant - open source - multitask.

1 Introduction

HAVmS effectively solves the problems related to the
”robustness” of computer systems wholly embracing the
concept of high availability. A system in high availabil-
ity, HA in what follows, must ensure the continuity over
time of the provided services, which, in case of fault,
must be restored in the shortest possible time. HAVmS,
through an accurate design of the Hw and Sw, signif-
icantly reduces the faults and their negative effects on
the provide services.

HAVmS has been designed mainly keeping in mind
the following requirements: cost effectiveness, ease of
management and, above all, the ability to automatically
implement restoring strategies of the provided services
without any interruption.

All the above requirements have been met by an
accurate choice of the available Open Source solutions
meeting our targets and their integration with the Sw
specifically conceived by the authors. In particular, the
last of them makes the system unique in its kind and
competitive with analogous commercial solutions.

HAVmS is made by two servers, one active and the
other dormant, but from the point of view of users, as
well as from that of applications, the system is seen as
a single server.

The fault tolerance of the system is ensured by a
continuous synchronization of the two servers. This
synchronization keep the data and the states of all
the virtual machines, VMs in what follows, perfectly
aligned.

Every service runs on a different VM each of which
has its own RAM, storage and some computing re-
sources. Each VM is independent of the others. When
a fault occurs, the sleeper server is awakened and au-
tomatically takes the place of the broken server. Once
the fault is fixed, it will be enough to reconnect the re-
paired server and automatically the failback procedure
restores the proper functioning of the system including
its HA capabilities.

1.1 The context

HAVmS is a general purpose system, this is one of its
strengths. Among the potential areas in which the sys-
tem proved its effectiveness, there is the acquisition and
processing of data from space missions.

The main abilities required to HAVmS by this par-
ticular context are:

• managing of processes that require uninterrupted
data analysis and data acquisition;

278

http://dx.doi.org/10.14311/APP.2014.01.0278


HAVmS: Highly Available Virtual Machine Computer System Fault...

• storing the results of the analysis for long periods
of time;

• making these results available to the scientific
community,

in an effective, continuos and reliable way.
In fact, scientists in this area are interested in per-

forming their analysis and tests on spatial observations
as soon and on as much data as possible.

Furthermore, missions such as INTEGRAL (Inter-
national Gamma-Ray Astrophysics Laboratory) Win-
kler, et al. (2003), have to maintain for a long period
of time the results of the scientific analysis performed
on the whole data set and usually released, as surveys,
about every year.

Finally a further important requirement that has
been met is making the management of the whole sys-
tem, as far as possible, easy and automatic, thus mini-
mizing the costs related to human resources devoted to
the management itself.

1.2 The alternatives

In designing, HAVmS we deeply analyze and consider
as points of reference the more widespread alternatives
currently implementing the concept of HA.

All these alternatives, in general, suffers from the
problem of the adoption of often expensive Sw and Hw
architectures.

More in details these are, from our point of view
and with respect to the particular operation context we
are considering, the main drawbacks of the considered
solutions:

• Windows Server Failover Clustering (WSFC):

Requires the purchase of a quite expensive Sw license
(when this paper is written, about 900 Euros per pro-
cessor). All servers in the cluster must be absolutely
identical. HA is guaranteed by a mirroring system,
replicating the status of the severs every 5-10 minutes:
if there is a fault during a replica, the replica itself may
fail and the running jobs are aborted with a high prob-
ability.

• VMware vSphere:

Requires the purchase of a quite expensive enterprise
license (when this paper is written, about 4000 $). Re-
quires professional Hw and an additional server to han-
dle the nodes in the system. The setup is not simple.

• Red Hat Cluster Manager (Red Hat Enterprise
Linux Server):

Requires the purchase of an annual license (when this
paper is written, about 500 $). In case of fault the

system must be restarted, as a consequence all runs in
progress are stopped. Does not support an automatic
failback mechanism.

2 Our Solution

Figure 1: HAVmS block diagram

Fig.1 shows the general architecture of HAVmS. Con-
tinuity of service is provided through an automatic
Failover (activates the dormant server in case of fault of
the active one) and Failback (restores the initial system
configuration and operation) mechanisms.

The software components implementing these mech-
anisms are:

• XEN VMs manager, a manager of virtual ma-
chines;

• DRBD (protocol D), a synchronizer of block de-
vices;

• Remus, provides transparent, comprehensive high
availability to ordinary VMs running on XEN;

• some components, designed and developed by the
authors especially conceived, among the others,
to implement the automatic failback and system
startup.

The system is based on the services provided by
Xen VMs manager. Each VM has its own IP address
by which it is accessible from the outside. As previ-
ously stated, one server is active, the other one is dor-
mant. The two servers are connected through a LAN
at 1 Gb/sec. Remus (in green) and DRBD (in red)
seamlessly (once every 40 msec) replicates the state of
the active server on the dormant one. In particular,
Remus replicates the states of VMs and simultaneously
sends a trigger to DRBD, which, in turns, synchronizes

279



Memmo Federici, Carlo Gaibisso, Bruno L. Martino

the block devices (hard disks) of the two servers. As a
consequence the two servers are aligned once every 40
msec. Users connect to the VMs through their unique
IP address. VMs makes it possible to install different
operating systems, on which different softwares and ser-
vices can be run, such as: Matlab, IDL and Web servers,
compilers and so on.

3 Servers Software and Hardware
Architecture

Both servers have the same software architecture, al-
ready introduced in the previous section.

The whole architecture leans on Linux Ubuntu
Server 10.04 64 (with a kernel customized to support
XEN).

In what follows the single components of the archi-
tecture are briefly described.

3.1 Xen

Xen hypervisor is a virtualization platform licensed un-
der the GPL developed at the Computer Laboratory
of the University of Cambridge. Xen is included in all
major Linux distributions and increasingly adopted by
commercial solutions. One of the its most interesting
feature is the ability to effectively control the requests of
access to physical resources coming from VMs through
a paravirtualization mechanism. This mechanism guar-
antees a minimum decay of performance due to virtu-
alization, since requests of access coming from VMs are
mainly executed on the physical computing resources.

Paravirtualization requires a customized version of
the Ubuntu kernel.

3.2 DRBD

DRBD (Distributed Replicated Block Device) is a dis-
tributed storage system for the GNU/Linux platform,
usually adopted by HA clusters. DRBD is responsi-
ble for the synchronization of data between the servers:
one of them is identified as primary, the other one as
secondary. When the primary server fails, a manage-
ment process promotes the secondary one to the role
of primary. When the fault is fixed, the system may
reestablish the roles initially assigned to the servers,
after a resynchronization of the data storage devices.
This synchronization is particularly effective since only
those blocks that were changed during the outage are
resynchronized.

3.3 Remus

Remus is part of XEN and implements the HA concept
by replicating on the dormant server the state of all
the VMs machine running on the active server. This
snapshot occurs once every 40 msec (this value can be

changed at setup time); at the same time Remus sends
a trigger to DRBD for the synchronization of the hard
disks. In this way the active server is constantly aligned,
both for what concerns data and computational aspects,
with the dormant server.

In case of fault of the active server, the dormant
one is awakened and becomes immediately active, thus
avoiding any interruption in the provisioning of services.
Moreover, the TCP/IP protocol guarantees the correct
transmission of data packets, even when the connectiv-
ity is temporary interrupted.

The architecture required to effectively support our
HA solution, does not expect the use of professional
HW. In fact, as will be evident from the following de-
scription of our experiences in the field, an entry level
solution with the following characteristics turns out to
be absolutely appropriate to the achievement of our
goals:

• I7 8 cores Intel Processor

• 8/16 Gb Ram DDR3

• 2 Tb Hard Disk

• 2 network interfaces

3.4 Failover

The typical faults of a operating environment such as
the one here considered here, can be attributed mainly
to two categories:
lack of connection, malfunctioning of some VMs.
In case of a fault, the failover process is automatically
triggered, which:

1. stops the DRBD synchronization between servers;

2. if running, stops the execution of Remus on the
active server;

3. awakens the dormant server. The execution of
VMs is consequently resumed from the last com-
mitted checkpoint (at most 40 msec before).

3.5 Failback

Unfortunately, Remus does not support any kind of au-
tomatic failback.

The Sw developed for HAVmS compensates for this
deficiency and gives it its unicity.

This process, which is automatically triggered and
implemented, restores the initial configuration and op-
erational capabilities of the system once the fault has
been fixed, included its HA functionality.

280



HAVmS: Highly Available Virtual Machine Computer System Fault...

4 Practical Applications

The development of HAVmS was determined by some
practical needs. Below we briefly describe the two ap-
plications that currently rely on the services offered by
the system.

4.1 The HA data storage system of
INTEGRAL

The Laboratory of Distributed Computing at IAPS
(INAF) is in charge of AVES Federici et al. (2012),
the cluster devoted to the analysis of data collected
by INTEGRAL. AVES is connected to Data Storage
Subsystem (DSS) a dedicated storage system Martino
and Federici (2011) adopting HAVmS. DSS automati-
cally downloads from INTEGRAL Science Data Center
(ISDC) Courvoisier et al. (2003) the data collected by
the satellite, backups this data and makes them avail-
able to AVES (16 TB to rise). As a consequence of a
fault of DSS the download is interrupted and AVES as
no longer access to the shared data. This might have
severe consequences on the ongoing activities since, in
turn, may cause a data misalignment and a crash of the
running analysis. HAVmS avoid these risks and their
unwanted consequences.

4.2 Continuity of service at IASI

HAVmS guarantees the continuity of the service pro-
vided by IASI IT division, among them: attendance
control, centralized computing, storage and backup,
printing services management. A different VM is al-
located to each service.

5 Further Potential Applications

In the following we describe two potential fields of ap-
plication of HAVmS we are investigating. These fields
differ substantially from one another. Each of them is
representative of a significant and large family of appli-
cations.

5.1 High End solution

Large structures, such as hospitals or national admin-
istrative offices should provide a relevant number of
services that are usually hosted on individual servers.
These servers, to ensure an acceptable level of reliabil-
ity, should be equipped by systems for the backup of
the status of the provided services and the data they
deal with.

This is therefore a privileged context within which to
exploit the characteristics of HAVmS. A quick market
survey has shown that our solution can meet the above
mentioned reliability requirements with not negligible
costs but still low if compared with those of similar

commercial solutions. In fact, one of the adoptable Hw
solutions could be the following: Motherboard Super-
micro Xeon MP series X9Qxxx, equipped with 4-socket
Xeon processors (32 cores), 120 GB of RAM, 4 ethernet
interfaces etc.

This configuration may provide up to 30 services,
each with its own VMs and IP address, with a cost of
approximately 5000 Euros per server.

5.2 A little gem

In this section we describe a solution adopting HAVmS
that fundamentally, both in terms of computing power
and cost, differs from the High End solution, which is
a good example of the great versatility of our HA solu-
tion.

This solution has been designed to deal with the
monitoring of atmospherical and geological events by
the use of sensors in hard to reach sites.

The resulting system, which has a cost of about 300$
when this paper is written, is composed by three Rasp-
berry PI collecting analog and digital signals from sen-
sors and transferring them by a radio link to a remote
control station. Thanks to the low power consump-
tion, the system can be powered by a small photovoltaic
panels. Two of the three Raspberry’s are allocated to
HAVmS; the third one, which is initially turned off,
is switched on in case of failure of any one of the first
two. This is obtained by a Hw signal sent through LAN
(wakeup on LAN). The awakened Raspberry takes the
place of the broken one thus guaranteeing the continuity
of service, included those offered by HAVmS.

This solution substantially limits the number of
maintenance interventions, thereby reducing the rela-
tive costs.

Figure 2: The Raspberry PI three node HAVmS

6 Further Work

We plan to improve the HA capabilities of HAVmS by
adding to the current configuration a third server in

281



Memmo Federici, Carlo Gaibisso, Bruno L. Martino

Wake on LAN. In case of fault this third server is auto-
matically awakened by an Hw signal sent through the
LAN and takes the place of the broken one. This au-
tomatic mechanism should not require any intervention
by the system manager. With this solution, the system
maintains its characteristics of HA also in case of fault
of one server.

To improve the effectiveness of HAVmS in rela-
tion to the use of network resources, multiple network
connections can be combined in parallel (bonding) to
increase throughput beyond what a single connection
could sustain, and to provide redundancy in case one of
the links fails.

7 Conclusions and Discussion

HAVmS is a Highly Available Fault Tolerant general
purpose, recyclable system based on the use of VMs,
assuring continuity of operation and no interruption in
services providing in case of fault.

HAVmS is cost effective since it only adopts open
source solutions.

It is also extremely versatile, providing all operating
systems supported by XEN. Paravirtualization dramat-
ically reduces the negative impact of virtualization on
the performance of the whole system.

The system supports automatic failover and failback
within times close to zero. Automatic failback is an ex-
clusive feature of HAVmS.

Acknowledgement

The authors thanks to: Giuliano Sabatino, Fabio Gugli-
etta.

References

[1] Winkler, C., et al.: The INTEGRAL mission. As-
tron. Astrophys. 411, L1L6 (2003)

[2] M. Federici, et al. 2012, AVES: A high perfor-
mance computer cluster array. Exp Astron (2012)
34:105121

[3] B.L. Martino and M. Federici ”An high availability
data storage subsystem for the INTEGRAL data
analysis”, Mem. S.A.It. Vol. 83, 377 2011

[4] Courvoisier, T.J.-L., et al.: The INTEGRAL sci-
ence data centre (ISDC) for the INTEGRAL satel-
lite scientific data analysis. Astron. Astrophys. 411,
L53L57 (2003) doi:10.1051/0004-6361:20031172

DISCUSSION

BEALL JAMES’s Question: Do you plan to use the
Raspberry PI machine for computation?

MEMMO FEDERICI’s Answer: Not in the tradi-
tional sense because RB is equipped with small amount
of RAM (only 256 Mb) and little computing power.
There are some applications that see this Hw used in
small clusters with low consumption. We plan to use
RB to make some services such as Web servers and print
servers. This small device is very versatile and lends it-
self also to the process control.

–

282

http://dx.doi.org/10.1051/0004-6361:20031172

	Introduction
	The context
	The alternatives

	Our Solution
	Servers Software and Hardware Architecture
	Xen
	DRBD
	Remus
	Failover
	Failback

	Practical Applications
	The HA data storage system of INTEGRAL
	Continuity of service at IASI

	Further Potential Applications
	High End solution
	A little gem

	Further Work
	Conclusions and Discussion

