
doi:10.14311/APP.2016.6.0011
Acta Polytechnica CTU Proceedings 6:11–17, 2016 © Czech Technical University in Prague, 2016

available online at http://ojs.cvut.cz/ojs/index.php/app

USING ROBOT OPERATING SYSTEM FOR AUTONOMOUS
CONTROL OF ROBOTS IN EUROBOT, ERC AND ROBOTOUR

COMPETITIONS

Grzegorz Granosik∗, Kacper Andrzejczak, Mateusz Kujawinski,
Rafal Bonecki, Lukasz Chlebowicz, Błażej Krysztofiak,

Konrad Mirecki, Marek Gawryszewski

Lodz University of Technology, Stefanowskiego 18/22, Lodz, Poland
∗ corresponding author: granosik@p.lodz.pl

Abstract. This paper presents application of the Navigation Stack available in Robot Operating
System as a basis for the autonomous control of the mobile robots developed for a few different robot
competitions. We present three case studies.

Keywords: ROS, navigation, robot, ERC, Eurobot.

1. Introduction
Students from the Scientific Association for Robotic
Research SKaNeR [1] at the Lodz University of Tech-
nology (TUL) have been competing in various inter-
national robotic contests (e.g. Eurobot, Robot Chal-
lenge, Robotour, Sumo Challenge, European Rover
Challenge) for several years. They have been work-
ing in separate teams focused on robot construction,
electronics and control specific for the contest. This
year we have decided to join forces and use Robot
Operating System (ROS) as a common software plat-
form to build autonomous mobile robots for various
competitions.

ROS has been introduced in Automatic Control and
Robotics curricula at TUL a few years ago in a very
smooth way [2]: (1) by modeling various robots in
our web-based application MyModelRobot in order
to learn XML syntax and robot structure used in
Gazebo and ROS, and (2) by utilizing rosserial and
rosserial_arduino to gather sensory data and control
small mobile robots. That way the interest in ROS
started to grow and we have learned how to use all
advantages of this system effectively, and specifically:

• A multitude of tools and libraries that were created
around ROS to rapidly prototype the high and
middle level of control system for mobile robots.

• Its modern software architecture to easily connect
different applications and devices. We could build
systems where most of processes work in parallel
and on different machines without building multi-
threading or networking procedures by ourselves.

• Its “thin“ ideology — in some cases programs did
not need to be highly integrated with ROS.

• We could reuse many tools created outside this
system by adding only small parts bridging them to
the ROS. Documentation and support provided by
books [3], [4], tutorials online, and ROS forum [5].

• Ease of debugging, visualization and logging by
using several tools: rxgraph to see system‘s state
graph, rxplot to plot different variables online, Rviz
to visualize the whole robot and its sensors readings,
or to archive and replay all data.

• Free and Open Access based on straightforward
licenses [6]. We could use many libraries, adapt
them to our needs and compile by ourselves.
The most complex problem all SKaNeR teams have

been facing is an autonomous navigation of a robot.
In the further part of this paper we will present our
approach to use ROS to solve this problem in the case
of three robots built for different contests: Eurobot
(robot Husarz), European Rover Challenge (Raptors
rover) and Robotour (Quadron and Raptors rover).
These robots have different constructions, different
kinematics and control systems. Further description
starts with application of navigation stack at the
Husarz robot then the specific adaptations to other
robots are presented.

2. ROS Navigation Stack
The Husarz system (composed of two robots, shown
in Figure 1) was developed by our SKaNeR team for
Eurobot competitions. Each edition of Eurobot. has
different main topic, in year 2016 it was Beachbot and
the tasks symbolized enjoying time on the beach.
• The flags — robots must close doors of a shed to
rise the flag.

• The sea fishing — robots must catch plastic fishes
from a aquarium with water and put them in a net.

• The sand castle — robots must build a sand castle
from several elements (cubes, cylinders, cones).

• The sea shell — shells are symbolized by round
discs, and they are in five configurations on the
playing area. Robot must take shells to the starting
place.

11

http://dx.doi.org/10.14311/APP.2016.6.0011
http://ojs.cvut.cz/ojs/index.php/app


G. Granosik, K. Andrzejczak, M. Kujawinski et al. Acta Polytechnica CTU Proceedings

Figure 1. Husarz robots at the Eurobot competitions

• Hide in the shade — this is the funny action, after
90 seconds (the end of a match) robot must rise a
beach umbrella to get extra points.
Each team is allowed to have up to two robots on

the playing area. Robots must be fully autonomous
during a match (no interference with human operator)
and avoid crashes with opponents (referee could give
negative points for a crash).
We have built two differential drive robots, the

bigger one has wheels while the smaller uses tracks.
They share the control system schematically shown in
Figure 2. We can clearly see that this control system
is organized according to the ROS Navigation Stack
presented in Figure 3 and in [7].
We used this approach to take advantage of the

provided programs (or nodes in ROS nomenclature,
see Figure 3): Planner/Navigator (move_base) and
the Adaptive Monte Carlo Localization (amcl). On
the other hand we had to provide exact structure of
the control system and format of all topics (messages
being sent between nodes).
The high-level controller knows all tasks (required

by competitions) and can choose which robot will
perform the specific one. These tasks are provided in
the script (in the form of sentences). Every sentence
is composed of several stages. The first one always
uses the move_base node to set the robot in an ap-
propriate position to run the task. Next steps depend
on the type of the task (for example: sending order
with a linear velocity directly to the robot to move
something on the playing area, or sending order to
the manipulators to pick up something, or some com-
bination of such orders). In the application prepared
for Eurobot 2016 contest we have specified four global
tasks: move pads (1), close doors (2), pick up and
bring the sand castle to point area (3) and catch the
fish (4). Tasks 1 and 2 could be performed by either
robot, while 3 and 4 could be made only by the bigger
one. At the beginning of a match, the big robot has
got three tasks to do, the small one has one regular
task and an extra task to be performed after the end
of the match (opening an umbrella after 90 seconds).

Figure 2. Control sytem of the Husarz robot

Let‘s look closer on the sea fishing task. Always in a
first step robot uses move_base planner to get to the
point nearby the task execution (close to the aquar-
ium in this case). After the robot gets to the right
place (with the right orientation) the main controller
sends order to the low-level controller to deploy a ma-
nipulator (fishing boom). In the next step the main
controller sends the value of linear velocity directly to
the low-level controller (which control drivers). The
main controller continuously analyzes position read
from /odom topic. When the robot reaches the other
end of aquarium the main controller sends order to
stop, then to return (sends negative value of linear
velocity). After that, the controller repeats the above
operation one more to go along the wall. On the next
run robot goes further to reach a net and leave fishes
(appropriate order sent to the manipulator) to score
points. Each step has got a time limit. After reaching
a time limit before completing a step, the program
has to choose either to repeat the step one more time
or tag this task failed and proceed to the next task.
The main controller counts how many times it sent
specific orders. If this value reaches the limit, the
program will move to another task.
The high-level controller node publishes the

/move_base_simple/goal topic containing informa-
tion about position and orientation of the tar-
get point in the standard format of geome-
try_msgs/PoseStamped message. This is one of the
inputs of the planner — which do all hard work of
finding safe path on the playing area and avoiding
obstacles — and further publishes /cmd_vel topic con-
taining reference linear and angular velocities for the
mobile robot in the format: geometry_msgs/Twist.
This topic is subscribed by the node which realizes
the low level controller and which is located on the Ar-
duino board controlling motor drivers. The low-level
controller also publishes an odometry information.

Planer and navigator hidden in the move_base node
has to be configured before use, we have to set robot‘s
size, maximum and minimum angular and linear ve-
locities, and accelerations, planner‘s frequency, map

12



vol. 6/2016 Using Robot Operating System for Autonomous Control of Robots

Figure 3. Standard ROS Navigation Stack [7].

Figure 4. Building the navigation map (middle)
based on the geometry of playing board (up) of Eu-
robot competitions, or based on several scans taken
on the real board (down)

parameters etc. If the robot has different kinematics
one can use another ROS planer leaving the operating
principles of the navigation stack unchanged. The
most important parameters in case of Eurobot contest
were pdist/_scale and gdist_scale:

pdist_scale — the relative importance of sticking
to the global path as opposed to getting to the goal.

gdist_scale — the relative importance of getting to

the goal rather than sticking to the global path.
By trying different values we have tuned these values

pdist_scale = 0.75, and gdist_scale = 1. Our robot
do not stick to global path but tries to get to goals
in a smooth way. When pdist_scale is larger than
gdist_scale the robot drives only trough global path
(often stops and sets up orientation) and wastes more
time (match lasts only 90 seconds).

The other important information is the map which
can be created directly using external sensors (e.g.
laser scanner) or prepared in any graphics software.
The format of /map topic is also standardized by
map.pgm (portable greymap) file. In case of the Eu-
robot competitions we had to prepare the map based
on geometric data describing playing area and a few
criterions. The elements on the playing board are
divided into three groups:
• fixed (walls),
• movable untouchable (opponent robots),
• movable touchable (playing elements).

Only fixed elements are included in the initial map,
as shown in Figure 4 (middle). This map is fur-
ther used by Simultaneous Localization and Mapping
(SLAM) method. Robot localizes itself and creates
cost maps in every step of the control. Necessary
sensor data are delivered by Hokuyo laser scanner in
message sensor_msgs/LaserScan — visible as white
dots in Figure 4 (down). These scans together with a
laser-based map and transform messages are used by
amcl node to produce pose estimates alternative to
dead reckoning. Laser scans are also used for obstacle
avoidance in the navigator — /local_costmap. Based
on the map, current scans and the next target point
(provided by the high-level controller), the planner is
generating reference path for the robot, as shown in
Figure 5.
The high-level controller takes care of the Husarz

behavior, it tracks the time of match, monitors com-
munication between nodes and the status of the task.

13



G. Granosik, K. Andrzejczak, M. Kujawinski et al. Acta Polytechnica CTU Proceedings

Figure 5. Rviz screens presenting two consecutive
steps of planning robot‘s movements (red line), red
arrow shows orientation of the robot required in the
step

We have assumed that robot can have four attempts
to fulfil each task. These attempts are limited in time,
because the match lasts only 90 seconds. After 4 un-
successful tries the status of the task is switched to
“fail“ and the robot moves to the next task. Program
selects the next task on the basis of distance to move
and the remaining time. If one of the robots cannot
finish the task it can be sent to the other robot if
that robot would be able to run the task. In case of
problems with communication the controller will wait
until communication is reestablished.
The main controller monitors condition of connec-

tions between ROS and robots. We are using a part
of standard ROS messages called header. Header in-
cludes sequence ID (uint32 format), time stamp (time
format) and frame_id (string format). For connec-
tion monitoring the most important is time stamp
indicating ROS time at the moment when the mes-
sage was sent. The monitor compares time stamps of
incoming messages. When the time stamp does not
increase with real time the main controller knows that
the connection with robot it lost. In this case main
controller goes to stop mode. While the controller is
in the stop mode it will not send messages to lower
level to avoid situation when the robot loses some
orders. In the stop mode the controller continue to
check time stamps of incoming messages in order to
detect recovery of communication.

2.1. BRIDGING ROS WITH LABVIEW
Another mobile robot requiring mobility planning and
autonomous control is Raptors Rover (see Figure 6)

Figure 6. The Raptors rover and its control system

being prepared for European Rover Challenge (ERC).
One of the tasks in this contest is navigation — in-
tended to demonstrate rovers and teams ability of
approaching locations on the field with limited or
without supervision. We have to develop a system
which will allow operator to navigate rover without
access to visual data such as video streaming, photos
and other sensor sources placed on the rover that are
presenting visual information.
The Raptors rover was built entirely in house —

it is a six wheels platform with well-known rocker-
bogie suspension system, wireless communication and
several cameras. The robot is also equipped with
exchangeable tools: 5DOF manipulator with gripper
and drilling sampler. The control system is organized
into 4 levels (see Figure 6): the operator‘s console
working on a PC computer and developed in Lab-
VIEW, the onboard main controller based on sbRIO
embedded system and developed also in LabVIEW,
low-level controllers based on ARM processors with
our own software written in C++, and motor drivers.
The communication system employs mainly WiFi and
CAN networks with local connections based on RS232
and SPI.

Application of the Navigation Stack in this case re-
quires the following modifications the original control
system:

• providing coordinates of goal points based on the

14



vol. 6/2016 Using Robot Operating System for Autonomous Control of Robots

Figure 7. Raptors rover navigation system (up) nodes
and topics of the ROS structure (down)

topological 3D map of ERC field,
• extending SLAM to 3D or providing alternative

source of pose estimation insensitive to traveling on
the rough terrain,

• connecting ROS nodes to LabVIEW based control
system to seamlessly exchange control and feedback
data.
The first requirement can be fulfilled by changing

script inside the high-level controller described in the
previous chapter. To address the second requirement
we have built an independent navigation system based
on ROS, as shown in Figure 7. Our system runs on
multiple machines with different hardware architec-
tures, file systems and OSs but it is not a problem
for ROS. Inertial data is provided by high quality
IMU with six degrees of freedom, containing gyro-
scope and accelerometer. The sensor‘s output is three
axis angular velocity and linear acceleration. Using
specialized filters system computes very accurate ori-
entation. GPS module outputs position data with
one meter accuracy. These data pass through the
Raspberry Pi3 (RPi3) microcontroller and Ethernet
to the computer in base station that is ROS master
and process the most demanding calculations (this
computer can be finally placed on the robot for full
autonomy). Wheel odometry is read from the sbRIO
board via WiFi connection.

To address the third modification correctly we need
to understand that ROS requires all nodes to be cre-
ated in certain way and in specific programming lan-
guage (usually Python or C++). However, there are
appliances which requires specific programming lan-
guage or hardware platform, and this leads to problem
with incompatibility of such ROS and non — ROS
system. This problem is common for various robotics
projects, and two bridging methods between ROS and
external applications were proposed:
• rosserial — simple wrapper for ROS messages, de-

Figure 8. ROS bridge functionality

signed to allow communication between microcon-
trollers and ROS nodes,

• ros_bridge — dedicated node, which translate ROS
messages into standard JSON format, and route
them to the right node. Non-ROS application is
required to provide support for WebSockets and se-
rialization of JSON messages, as shown in Figure 7.
In our application, sbRIO board runs the LabVIEW

application, which is not able to talk with ROS nodes.
However, LabVIEW includes functions allowing se-
rialization and deserialization of messages in JSON
format and is capable to communicate over the net-
work. Ros_bridge package was chosen as a method
of communication, because of its flexibility and full
support of ROS message format.

Additionally, format of the control data in the Rap-
tors rover is different than required by Navigation
Stack. Robot has 6 independently driven wheels, the
steer maneuver is obtained by differential control of
the wheel speeds of the left and right side of the robot
and these speeds are scaled in per cents. Linear veloc-
ity is in the range 0-255 (0-100%), the angular velocity
is also 0-255 (0-100%), but we do not steer directly
the angle, instead we use a difference of control be-
tween the left and right side drives of the robot. Due
to the further coding of these control signals on the
CAN bus (in order to send them to STM modules),
we have used the following ranges of values of a linear
speed: 127-128 (50%) means stop, 0-127 is reverse,
and 128-255 is forward. Similarly, the angular velocity
of the robot or the difference between the left and
the right side is zero for values of 127-128 (50%), the
range 0-127 means turning left, and 128-255 means
turning right.
To obtain a uniform data format for input to the

ROS module, before sending data through the ROS
bridge we have to scale it in an additional vi (section
of main program in LabVIEW) which produces a
reference linear velocity and angular velocity — see
Figure 8
During tests we were using Crossbow IMU800CA

which was directly publishing raw data over RS232.
In this case we were forced to use a specialized filter,

15



G. Granosik, K. Andrzejczak, M. Kujawinski et al. Acta Polytechnica CTU Proceedings

as mentioned, to parse the data from the raw digital
sensor outputs to proper quaternion based format.
We have tried two filters from the navigation stack:
Madgwick‘s algorithm and complementary filter. They
can be found in imu_tools package. These filters are
responsible for inertial data fusion and noise reduction.
We have also tested the new IMU unit that is Xsens
MTi 1. It has both accelerometer and gyroscope and
additional magnetometer on board. Usually we would
have used our node that reads data from serial port
but more often ROS comes with packages supporting
particular hardware eq. Xsens. The package we use is
called xsens_driver and contains nodes for gathering
data and launch file that even automatically searches
for a right serial port and baudrate. For getting GPS
data from our Omnistar 3200lr12 we use the excellent
nmea_navsat_driver that plugs to the serial port
directly and parses NMEA sentences from GPS unit
into GPS location form on-the-fly. The final data in
a form of digital latitude and longtitude is being sent
in sensor_msgs/ NavSatFix via /fix topic. The only
thing we had to do here was to create the launch file
that indicates which sub-nodes to launch and which
serial port and baudrate to choose. Wheel odometry
data has longer way to go. It is published from wheel
encoders via CAN bus to the sbRio computer and
then using rosbridge and JSON format to ROS. In
a specialized node it is used to calculate position in
respect of rover‘s kinematics. Having these three data
lines, we could use it all over the distributed ROS
system eq. plug it to a Kalman filter available in
robot_localization node and connect the output topic
of estimated odometry to planning structure made by
our colleagues from Eurobot team.

2.2. QUADRON ROBOT
We have built Quadron robot (shown in Figure 9)
to compete in Robotour contest. It has a carlike
kinematic configuration, the base of this vehicle is
an electric quad. We have introduced a number of
electrical and mechanical modifications, especially in
the supporting frame, the drive systems and steer-
ing mechanisms, that now can be done with electric
motors. For the main drive we have used 500W DC
motor, while for the steering the smaller DC gear
motor and a coupler system developed in house. Each
engine is equipped with a driver, encoders and security
features the same as used in Raptors rover.
The robot is further equipped with a number of

sensors and modules responsible for security, localiza-
tion and navigation in the field: navigation module
with GPS and IMU (described earlier), SICK LMS291
lidar and ultrasonic sensors facing forward.

The concept of a multilayer control required the use
of computers at different levels: ARM microcontroller
(STM32 Nucleo) at the lower, and mini size PC at
the higher layer, as shown schematically in Figure 10.
Entire system is based on ROS. The low level node
with the software written in C++ is interfacing motors,

Figure 9. Quadron robot for Robotour contest

encoders, sensors and gamepad. It also receives a
higher level commands from the PC, sends appropriate
signals to the motors and data from sensors to PC.
The board and the PC communicate using rosserial.
Basically, Nucleo is connected to the computer using
a serial connection and data is transmitted using USB
port. The rosserial protocol can convert the standard
ROS messages to embedded device equivalent data
types, it also implements multi-topic support.
A package which enables us to run a ROS node

at the embedded devices such as Nucleo is called the
rosserial_client. On the PC side, we need some other
packages to decode the serial message and convert to
exact topics from the rosserial_client libraries. The
recommended PC side node for handling serial data
from a device is rosserial_python.
For high-level layer is realized by mini PC located

on the robot. It is connected to Nucleo, laser scaner,
IMU and GPS to receive sensor values which are
essential for map building process using SLAM, ob-
stacle avoidance and also the odometry as mandatory
input to the navigational stack. We use standard
ros messages inside i.e. sensor_msgs/LaserScan, sen-
sor_msgs/Range, nav_msgs/Odometry.
We have applied the same Navigation Stack (as

in Husarz robot) and used teb_local_planner node.
It supports car-like kinematics, minimizes the trajec-
tory execution time (time-optimal objective), provides
separation from obstacles and compliance with kin-
odynamic constraints (i.e. maximum velocities and
accelerations).
The base control system of Quadron robot is very

similar to Husarz, and is shown in Figure 11. Most
of the components are the same, the main differences
are described below.

We have added a node called base_controller which
communicates directly with the electronics of the
robot. This node finally generates the motor speed

16



vol. 6/2016 Using Robot Operating System for Autonomous Control of Robots

Figure 10. Controller of the Quadron robot

commands for each motor (PWM). Base_controller
node subscribes to a topic cmd_vel, which is being
published by the local planner and it converts stan-
dard message type geometry_msgs/Twist (which pub-
lishes linear v and angular Omega velocities) to the
other type called ackermann_msgs/AckermannDrive
according to the kinematic structure of the robot (see
Figure 12) and using classic equations for Ackerman
steering robots.
The base_controller node incudes also an imple-

mentation of PID controller, that is why it subscribes
odomerty.

What is more, in the Quadron robot we used addi-
tional odometry sources i.e. IMU and GPS to obtain
precise localization, and ultrasonic sensors in order to
improve obstacle avoidance.
In case of any problems with high-level controller

we are still able to control robot manually through
gamepad which is connected directly to Nucleo board
over SPI interface.

3. Conclusions
The great advantage of ROS is that we can supervise
and visualize our data in real time. However, plotting
is available only on x86 or x64 architecture because
ARM processors (Raspberry Pi 3) do not support ROS
graphic libraries. In our system the external computer
is just a client that has an access to topics and can
run its own nodes. The only requirement is to share
the same network and configure the /.bashrc file to
define the master‘s and client‘s IP addresses. Basi-
cally, it is the vital that we use appropriate forms of
messages — specific message types and topic names to
meet the nodes requirements. It is possible to remap
topic names in launch files but it is somehow against
ROS‘s philosophy that assumes focusing on preestab-
lished design rules. This design concept makes ROS
systems extremely extendable. Easy and logical file

Figure 11. Navigation structure of the Quadron robot

Figure 12. Kinematics of the Quadron robot

structure gives the opportunity to modify source code
and add new nodes quickly. The growing ROS society
is still supplying the repositories with a new software
that can be used immediately after committing it to
GitHub.

Acknowledgements
Research and participation in robotic contests supported
by the Polish Ministry of Science and Higher Education
under grant No. MNiSW/2016/DIR/199/NN

References
[1] An official webpage of skaner.

http://skaner.p.lodz.pl.
[2] I. Zubrycki, G. Granosik. Introducing modern robotics
with ros and arduino, including case studies. Journal of
Automation, Mobile Robotics & Intelligent Systems
JAMRIS 8(1):69–75, 2014.
doi:10.14313/JAMRIS_1-2014/9.

[3] P. Goebel. ROS By Example. Lulu, 2013.
[4] A. Martinez, E. Fernaandez. Learning ROS for

Robotics Programming. Packt Publishing, 2013.
[5] Ros answers forum. http://answers.ros.org.
[6] Ros developers guide.

http://wiki.ros.org/DevelopersGuide.
[7] Setup and configuration of the navigation stack on a
robot. http:
//wiki.ros.org/navigation/Tutorials/RobotSetup.

17

http://skaner.p.lodz.pl
http://dx.doi.org/10.14313/JAMRIS_1-2014/9
http://answers.ros.org
http://wiki.ros.org/DevelopersGuide
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/RobotSetup

	Acta Polytechnica CTU Proceedings 6:11–17, 2016
	1 Introduction
	2 ROS Navigation Stack
	2.1 BRIDGING ROS WITH LABVIEW
	2.2 QUADRON ROBOT

	3 Conclusions
	Acknowledgements
	References

