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Abstract. Assume a team of mobile robots operating in environments where no communication
infrastructure like routers or access points is available. The robots have to create a mobile ad hoc
network, in that case, it provides communication on peer-to-peer basis. The paper gives an overview of
existing solutions how to route messages in such ad hoc networks between robots that are not directly
connected and introduces a design of a software framework for realization of such communication.
Feasibility of the proposed framework is shown on the example of distributed multi-robot exploration
of an a priori unknown environment. Testing of developed functionality in an exploration scenario is
based on results of several experiments with various input conditions of the exploration process and
various sizes of a team and is described herein.
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1. Introduction
One of the key issues when designing a robotic system
involving more than one entity is how these entities
communicate. The majority of current multi-robot
solutions are centralized (i.e., they have a central el-
ement through which all messages between robots
are passed) or assume an unlimited communication
range allowing to send messages directly between two
arbitrary robots. This setup has many advantages,
but also several drawbacks. It can be hard, costly
or even impossible to prepare external communica-
tion infrastructure assuring one-to-one communication
accessibility in hostile, unexplored or large environ-
ments. Moreover, robustness of centralized systems
which are highly dependent on a single node is low.
Finally, it might be difficult to exchange information
in large systems consisting of many robots as their
communication capacities are limited and a number
of messages is high. Some other arguments as well
as real-world applications where ad hoc networks im-
proved or might improve performance, scalability and
robustness of robotic teams can be found in [1].
Elkady et al. [2] give a nice survey of robotic

middlewares. Besides centralized client-server archi-
tecture employed, e.g. in Player/Stage/Gazebo [3],
ACE/TAO library [4], implementation of CORBA
(Common Object Request Broker Architecture)
standard [5], is used for peer-to-peer communica-
tion in middlewares like CLARAty [6], MIRO [7],
OROCOS [8]. Alternatively, the Ice framework by Ze-
roC [9] for remote procedure calling (RPC) can be used
as it is already done in the Orca project [10]. Both
ZeroC Ice and CORBA do not provide communication
between directly inaccessible nodes in a decentralized
fashion and although extensions for ad hoc networks
exist [11] they were not used in the mentioned robotic

middlewares. Communication in Robot Operating
System (ROS) [12], the mostly popular robotic frame-
work, is peer-to-peer, but this communication is me-
diated by so called rosmaster. This node provides
naming and registration services and enables individ-
ual ROS nodes to locate one another. Once the nodes
locate each other, they communicate directly. Also
ROS does not provide routing of messages between
inaccessible nodes.
On the other side, several works were presented

which describe application of mobile ad hoc networks
with routing in robotics. Witkowski et al. [13] present
a cell-based network with master nodes in each cell
and routing between distant nodes is provided through
these master nodes which are distributed uniformly in
the environment. The authors validate the approach
on two scenarios. While measuring of the signal qual-
ity of WLAN and Bluetooth communication nodes in
indoor environments with different kind of wall mate-
rials is the aims of the first one, the second experiment
deals with radio-based positioning of robots in a dy-
namic environment. Corell et al. [14] study a wireless
coverage problem with minimal requirements to hard-
ware of robots. As a communication middleware they
use Optimized Link State Routing (OLSR) [15] which
provides TCP/IP routing for the resulting mesh net-
work. A suite of algorithms that cover a defined area
by a fully distributed robotic team, detect network
disconnections, perform network repair, and repair
area coverage is presented in [16]. Finally, Agrawal
et. al [17] experimentally evaluate two routing pro-
tocols for a robotic swarm. The swarm aims to find
a source of heat and a particle swarm optimization
algorithm is employed as a search strategy.

The aim of this paper is to give an overview of rout-
ing protocols in ad hoc networks and choose the most
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suitable for application in the multi-robot domain.
The chosen protocol is than used in a design and real-
ization of the framework for exploration of an a priori
unknown environment which thus serves as a testbed
for experimental evaluation of the protocol implemen-
tation.

The rest of the paper is structured as follows. Sec-
tion 2 contains a structured list of requirements for
a routing protocol, a classification of protocols, and
describes the main representatives of the categories.
Then a comparative analysis of routing protocols
is performed. Analysis of three Message-Oriented
Middlewares (MOM) describes in Section 3. The gen-
eral application architecture and using of selected
measures is presented in Section 4. Section 5 con-
tains results of the experiments, which allow to ver-
ify the implementation performance of the proposed
architecture. The final evaluation of the paper is
in Conclusion.

2. Ad hoc routing protocols
A robot team forms an ad hoc network as it does not
rely on a pre-existing infrastructure, while interaction
between team members is done by a routing protocol.
Operation efficient of a distributed robotic system re-
quests a routing protocol to meet certain requirements.
The key assumption is fully distributed operations and
the protocol should not depend on a central control
node. Due to high mobility of the nodes, the protocol
should easily adapt to changes in network topology
caused by movement of nodes. It also needs to be
localized, since global exchange of routing information
will require large overheads [18].

An important requirement is the absence of routing
loops. A routing loop occurs when the packets con-
tinue to be routed in an endless circle of the nodes.
The protocol should not contain them, otherwise
the overall efficiency is reduced, the routing loop will
spend more bandwidth and more computing power of
each node in this loop. The protocol should take care
about saving resources of network members.

In addition, the protocol needs to be scalable, this
means that its effectiveness should not depend on
the number of members in the network. Increase or
decrease of the network should not affect its perfor-
mance. It also needs to be adapted to any speed of
nodes and any type of their movement. In conditions
of high mobility the protocol must be able to quickly
recalculate cost and build the path to the destination
which will include the lowest number of other nodes.
While building the path and forwarding of messages,
it is necessary to effectively avoid outdated routes [19].
The rest of the section contains a brief descrip-

tion of few most commonly used routing protocols
and their comparison based on the above require-
ments. The main purpose of this comparison is to
select the routing protocol that is the most suitable
for teams of mobile robots which establish a wire-

less Mobile Ad hoc Network (MANET) without any
centralized structure.
The routing protocols can be divided into proac-

tive (table-driven), reactive (on-demand) and hybrid,
which combines advantages of the first two categories.

2.1. Proactive routing protocols
Table-driven protocols constantly maintain the rele-
vance of the routes between sources and destinations.
To maintain a correct view of the network topology
a protocol of this type responds to every change in
the structure by sending changes across the entire
network. Moreover, the protocol periodically sends
route update messages to its neighbours. These pro-
tocols require to store routing information in one or
more tables in each node [20]. These protocols do
not scale well and control overheads are proportional
to the number of nodes in the network.
Destination Sequenced Distance Vector

(DSDV) [21] is one of table-driven protocols
and it is a loop-free modification of the Bellman-
Ford routing algorithm [22]. Each node maintains
a routing table that contains entries for the next hop
on the shortest path to all reachable destinations.
The protocol uses a sequence number attribute to
ensure the freedom of cycles and to distinguish stale
routes. DSDV uses two types of dumps with updates
of the routing table which sends to all immediate
neighbours. The first type is periodically sent
full dump which contains all available information
about the routing information. The second type is
an immediately sent incremental dump which sends
on route changes and contains only changes that have
occurred since the last full dump.

Another proactive protocol is Optimized Link State
Routing (OLSR) [15] protocol, which is based on basic
link-state algorithm. Every node maintains a network
topology graph. Each node has thus shorter routes
to every destination immediately, when data trans-
mission begins. To keep the relevance of the topology
a node periodically floods hello messages about its
available links to the others. OLSR uses also topology
control (TC) messages that contain information about
one-hop neighbours. The main optimization lies in
using of multipoint relays (MPRs). It reduces message
overhead, because only nodes which were chosen as
MPRs forward broadcast messages during the flooding
process.

2.2. Reactive routing protocols
Reactive protocols perform the process of route dis-
covery only on request. The source floods the network
with route query requests when a packet needs to be
routed using distance vector routing or source routing.
The problem of reactive protocols is the delay of packet
transmission during the route discovery. On the other
side, the route is discovered only when needed, i.e.,
it is generally less memory demanding compared to
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proactive protocols and requires relatively little con-
trol traffic overhead.

Dynamic Source Routing (DSR) [23] is an example
of on-demand routing protocols. DSR supports two
types of operations: route discovery, when the node is
required to transfer the data to the destination with
an unknown route, and route maintenance, that allows
to determine that the network topology is changed.
After the work of these mechanisms the sender knows
the complete hop-by-hop route to the destination.
All transmitted routes stored in a route cache decrease
time of route discovery. The protocol allows multiple
alternative routes to the same destination and allows
each node to perform load balancing.
Another example of reactive protocols is Tempo-

rally Ordered Routing Algorithm (TORA) [24] based
on the link-reversal algorithm. TORA performs
three functions: route creation, when a node uses
a height metric to establish a destination oriented di-
rected acyclic graph, route maintenance, when a node
reestablishes routes due to topology changes and route
erasure, when it is necessary to erase invalid routes.
The protocol builds loop-free routes and provides mul-
tiple routes to alleviate congestion. However, TORA
may produce temporary invalid routes, as well as
the Light-weight Mobile Routing Protocol [25] which
it is based on.

2.3. Hybrid routing protocols
Hybrid protocols typically try to reduce delay of route
discovery from reactive systems by creating some form
of routing tables and reduce control traffic overhead
from proactive systems [20].
Zone Routing Protocol (ZRP) [26] is a hybrid pro-

tocol, which uses a proactive approach to a close
neighborhood and a reactive approach to remotely
lying nodes of the network. In other words, each
node divides the network into intrazone and inter-
zone. The node immediately knows routes to all nodes
within the intrazone. The discovery of such paths is
produced by the algorithm similar to DSDV. If an ini-
tiator needs to send data to a recipient which is in
the interzone the sender proactively maintains a route
to the destination. This approach reduces latency in
route discovery and decreases the number of control
messages.
Ad hoc On-Demand Distance Vector routing

(AODV) [27] is also a hybrid protocol based on
the principles of the DSDV and DSR protocols.
The protocol sends a periodic hello message, maintains
the route table with a maximal single route for each
destination and uses the principle of sequence num-
bering, as DSDV routing protocol does. On the other
side, AODV provides a similar route discovery proce-
dure as in DSR. A route between nodes is established
only if it is necessary to send the data and there is
no active route to the destination, i.e., the routing
protocol reduces network overhead as compared with
the DSDV algorithm. Moreover, the route discovery

packets do not contain a complete sequence of nodes,
that is an advantage compared to DSR.

2.4. Comparison of routing protocols
There are several criteria [28] for evaluating the per-
formance of a routing protocol:

• Packet delivery fraction is calculated as the ratio be-
tween the number of received messages by the desti-
nation to the number of messages sent by the sender;

• End-to-end delay is the average time that elapses
between the first packet which was transmitted by
the sender before the first data packet received by
the destination. The metric includes the time of
route discovery, transmission delay, queuing delay
and propagation delay;

• Routing overhead is calculated as the ratio between
the routing packets to the total number of packets
transmitted by the sender;

• Throughput is the amount of successfully delivered
data via a communication link per time. It is usually
measured in bits per second.

The article [28] discusses three routing protocols -
DSDV, AODV and DSR. Testing is carried out on
teams of robots, whose size ranges from 10 to 80
pieces. Robots perform a task similar to the task of
terrain exploration. Each node chooses some point in
the terrain and moves toward it. The article considers
all four criteria.
DSR and AODV show better value of packet de-

livery fraction than DSDV. The value is about 95%
for a team of 10 robots and it tends to 100% with
an increase in the team size. AODV shows the small-
est value of end-to-end delay. DSDV is a proactive
routing protocol, so it shows better results than DSR.
The value of routing overhead for AODV is better
than DSDV. However, DSR has the smallest routing
overhead in comparison with the other two. Through-
put has the lowest value for proactive DSDV. Both
DSR and AODV show approximately the same results,
but this metric for DSR is slightly higher.
A performance comparison of AODV, OLSR and

ZRP is described in [29]. The simulation is conducted
for teams of robots with sizes of 25, 50, 75, 100, and
provides measurement of all metrics, except the rout-
ing overhead. The packet delivery fraction for AODV
is approximately 90%, while OLSR and ZRP have
the values of 20-40%. Moreover, AODV has the high-
est throughput, as compared to two other routing pro-
tocols. However, AODV shows a significantly larger
end-to-end delay than the reactive OLSR and the hy-
brid ZRP.
The publication [30] compares the performance of

DSDV, TORA, DSR and AODV. The maximum num-
ber of robots in the team in the simulation is 50.
The article considers several metrics, which include
packet delivery fraction. Both DSR and AODV show
excellent results for the packet delivery ratio, which
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ActiveMQ Apollo ZeroMQ nanomsg

Open-source Yes Yes Yes
Has detailed documentation Yes Yes Only manual pages
Has new updates Yes Yes Yes
Point-to-Point message passing Yes Yes Yes
Publish/Subscribe message passing Yes Yes Yes
Written in Java C++ C
Transport protocol TCP, UDP TCP, in-proc TCP, in-proc
Support brokerless model No Yes Yes
Complexity of use Requires broker Without Without

configuration pre configuration pre configuration

Table 1. A brief comparison of message oriented middlewares.

ranged from 95 to 100% depending on the network
load.

AODV is selected for implementation of the explo-
ration framework on the basis of the above mentioned
comparisons. Simulations use robot teams of various
sizes and display measurement results that are close
to the conditions of the real world. The main advan-
tage of AODV is a high percentage of packet delivery
to the destination. The routing protocol has a good
throughput compared to the rest. The designed ap-
plication does not send many unicast messages, so
the inflated end-to-end delay and routing overhead are
not important. That is, these values are acceptable
for the terrain exploration problem.

3. Message oriented middleware
The exploration application uses message passing to
communicate between team members. It is a tech-
nique for invoking behavior, which uses incoming mes-
sages from other processes to run a code. There are
two types of message passing: synchronous and asyn-
chronous.
The synchronous approach implies that message

exchange takes place at a time when applications are
running simultaneously. It uses temporary sender
blocking before receiving a response from a recipient
and infinitely blocking in case of recipient unavail-
ability. The robots move in the environment during
the exploration problem solving and can get out of
the communication range. In addition, the robot can
be turned off, for example, due to the battery dis-
charge. In such cases, the message sender is blocked.
That is, synchronous approaches are not suitable for
use in distributed robotic systems that solve explo-
ration problem.
The asynchronous approach does not require si-

multaneous operation of a sender and a recipient.
The intermediate level of software provides all the op-
erations for receiving, storing and sending of messages.

The most known type of such software is Message-
Oriented Middleware (MOM).
Table 1 provides a brief comparison of main pa-

rameters of these three widely used asynchronous
Message-oriented middlewares: ActiveMQ Apollo [31],
ZeroMQ [32] and nanomsg [33].

As can be seen from the table, all three libraries are
open-source and release new updates. The first two
libraries are well documented and have a large com-
munity of users. The latter is improved and rewritten
ZeroMQ library, which currently has only the manual
pages, but the number of nanomsg users is constantly
growing.
All considered libraries support binding for com-

monly used programming languages as Java, C, C#
and C++. ZeroMQ and nanomsg have also bindings
for Ruby, Go, Haskell, Perl, PHP and others.

There are two main functionalities of MOMs: mes-
sage queuing and publish/subscribe. The first ap-
proach is a point-to-point messaging model, that is,
a message is sent from a sender to a recipient. Pub-
lish/subscribe approach is a many-to-many messaging
model. All three libraries include both types of mes-
sage passing.
The libraries support a wide range of transport

protocols, but Transmission Control Protocol (TCP),
User Datagram Protocol (UDP) and in-proc are rele-
vant for the purposes of the application. All considered
libraries support transfer of data over TCP. ActiveMQ
Apollo additionally supports UDP, while the other
two do not support it. ZeroMQ and nanomsg can
use in-proc transport protocol. It is an inter-thread
transport, which is much faster than TCP and can
transfer data between threads of a single application.

The most important difference is that the basic prin-
ciple of ActiveMQ Apollo is to create and configure
a broker. A distributed multi-robot system has no
central node, which could be a broker. A possible solu-
tion is creation of a broker at each node of the network.
However, this solution is cumbersome and requires
excessive pre-configuration of brokers. Contrariwise,
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ZeroMQ and nanomsg support brokerless model.
Nanomsg library was developed by one of the key

creators of the ZeroMQ library and it fixes most of
the ZeroMQ drawbacks. The main one is the problem
with fault tolerance. Nanomsg provides a new pattern
of communication that does not require redundant
confirmation from a recipient in the model Request-
Router that resembles the work of procedure calls.
The library allows to set a timeout for an operation of
sending messages. It allows to refuse the message send-
ing, if it is not sent for some predetermined amount
of time.

On the contrary, ZeroMQ does not provide the pos-
sibility to obtain information about the current status
of the recipient before sending a message. Moreover,
the library does not allow to set a timeout on an at-
tempt to send a message. Thus, in case of a fall,
the whole system of robots gradually stops because
of waiting a response from each other.
The nanomsg library was chosen for use in the ap-

plication on the basis of the above comparison of
the characteristics of the libraries. Because the li-
brary doesn’t provide an implementation of UDP,
the transport protocol is proposed to implement using
standard sockets.

4. Distributed exploration
Exploration as a process of autonomous navigation of
a mobile robot in order to build a model of an a priori
unknown working environment in a shortest possible
time is one of the fundamental problems in mobile
robotics. In general, exploration is an iterative pro-
cess that performs the following operations at each
step: the robot receives information from its sen-
sors, updates an internal model of the surrounding
space on the basis of these data, selects the next goal
for the navigation on the basis of the current knowl-
edge, and gradually moves to the selected destination.
The process continues until there are no more avail-
able goals, that is, all areas of the environment will
be explored [34, 35]. The main source of optimization
is preparation of a set of possible goals and selection
of a next goal from them, which is the most favorable
for exploration purposes.
Besides the tasks mentioned above, the problem

of distributed terrain exploration by a multi-robot
team requires solving the problem of communication
between team members and the problem of coordi-
nation their actions. This is why we selected this
task as a testbed for evaluation of the AODV routing
protocol.
Information about the terrain which is exchanged

between team members and the method of determin-
ing the set of possible navigation goals depends on
an exploration approach that is selected for implemen-
tation. Frontier-based exploration [34] is chosen as
one of the most common and widely used approaches
which also has the extension for the case of multi-robot
exploration [36]. The approach is based on the concept

of a frontier, which is a boundary between the already
known part of the terrain and still an unknown part.
The internal representation of the map is an occupancy
grid, which uses Bayesian based updating technique.

The main advantage of the environment exploration
by a multi-robot team is the ability to easily share
knowledge about the terrain between its members. Ex-
ploration of non-overlapping areas by different robots
allows to raise efficiency of teamwork and reduce
the total exploration time. Each robot in the team
conducts the current goal selection independently on
the basis of its current knowledge of the environment
and the goals of the other team members. A greedy
algorithm is chosen as the most primitive and native
approach. It means, that the closest frontier to the cur-
rent position of the robot is selected as the goal. In
addition, the selected goal should not lie in the areas
of the current goals of the other team members, which
have active communication link to the robot. After
the goal selection the robot informs the others about
the selected goal and reports the priority for this goal.
If an other team member has the goal in the same area
with a higher priority, it sends information about its
current goal and forces the robot with a lower priority
to choose another goal and generate a new plan.

Description of the software architecture of a single
robot performing distributed exploration and com-
municating with other robots making use of AODV
follows in the next paragraphs.

While designing the application structure for a sin-
gle robot it was assumed that the application can
operate in two roles: Robot and Display. The applica-
tion for a robot role controls a robot as it carries out
reading of data from its sensors, produces the robot
movement in the terrain, performs path planning and
communication with other team members. The appli-
cation for a display role is used to monitor and display
the status of the multi-robot exploration process and
can vary from the specific implementation. The appli-
cation of this type is also a part of the mesh network,
but it does not directly participate in the exploration.

Figure 1. Proposed application structure.

It is recommended to use AODV routing proto-
col based on the analysis result of routing protocols
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from Section 2. The application should have the tools
to unicast and broadcast messages for AODV imple-
mentation. TCP is the most appropriate protocol
for the purposes of sending messages between robots.
Flooding and sending hello messages can be realised
with using less reliable UDP, which however supports
broadcasting. According to the results of a compar-
ative analysis in Section 3 nanomsg recommended
for implementation as a MOM. Thus, the nanomsg li-
brary provides the transfer of messages between robots
via TCP and uses in-proc for transfer of information
between different parts within the application itself.
Because this library does not support the UDP, broad-
casting should be implemented by means of language
in which the application will be realized.
Fig. 1 shows the proposed general structure of

the application, and describes the relationship be-
tween it and the external environment. Application
operations have different frequency of launching and
some of them can be called asynchronously. E.g.,
plan generation usually runs once per two seconds or
on the request from the other robot. A command to
control robot movement can be sent every 100 millisec-
onds. The optimal frequency of sending the heartbeat
for the purposes of AODV is 1 second. Moreover, it
is desirable to receive messages from the other robots
instantly. Message sending is also necessary to make
immediately to reduce the overall time of the terrain
exploration. This means that the designed applica-
tion could not be structured in a single loop. For
these reasons, the structure is divided into 5 logical
parts, which can be implemented as threads: motion
control/visualization, path planning, timer, message
processing and inbox messages part.

These parts of the application share three data struc-
tures: map, current plan and scans archive. Map keeps
an internal representation of the application’s view
about the environment and depends on the selected
type of the exploration. In the case of frontier-based
exploration, the map will be in the form of the oc-
cupancy grid. Current plan is the path to a goal
selected at this iteration of the exploration process
in the form of a polyline. Scans archive is a data
structure that contains scans received from sensors of
any robot of the team. That is, the structure stores
local maps created by the robot and local maps cre-
ated by other robots and transmitted via flooding.
The principle of the transfer of local maps between
robots during the terrain exploration of a multi-robot
team is described in [36].
The application for a robot role is determined by

using the motion control thread. It is responsible for
receiving the current plan, sending signals to the robot
motors for movement to the next selected goal, using
the robot sensors to obtain scans, which are then
stored in the scans archive and receiving new scans
from the scans archive received from other robots.
Finally, the thread conducts a map update on the basis
of these data.

If the application is launched for the purpose of
visualization of the exploration process, it uses a vi-
sualization thread. The application of this type does
not create its own scans, so the scans archive contains
only local maps received from the robots. This thread
uses them to update the map, which is displayed on
the screen after that.

The path planning thread is the main component of
each iteration of the terrain exploration process. This
thread selects the next goal for the motion and makes
the path to it. This plan is written to the shared
structure. The thread uses the map to plan.
The application uses a timer to generate the plan

after a certain predetermined period. The timer is
located in the timer thread.

The message processing thread is the main connec-
tion between the robot and the rest of the team. It is
responsible for sending messages to other robots about
a new generated path or a new laser scan. It also re-
ceives messages from the inbox messages thread.

The inbox messages thread deals with receiving mes-
sages from other team members and sending them in
the messages processing thread.

5. Experimental results
For functional testing of the proposed framework,
the application of a multi-robot team member was im-
plemented. It is implemented in C++ and simulates
the work of an exploration robot for experimental
verification of the effectiveness of the proposed appli-
cation structure. It imitates operations of the real
robot equipped with a laser range-finder. The robots
are controlled by a simple controller which guides
the robot exactly along a planned path with a con-
stant speed. Ray casting was used to simulated a laser
range-finder with no noise incorporated.

Behavior and properties of the implemented applica-
tion were experimentally evaluated and its character-
istics were compared with a single-robot exploration.
The experiments were conducted using a device which
has 32 Central Processing Units (CPU) and has 8 GB
of memory.

All tests were performed in simulation on the map
of an empty terrain that has a size of 20 by 20 meters.
Each cell of the occupancy grid has a size of 5 by
5 centimeters. It means that the occupancy grid
has a size of 400 by 400 cells. Various numbers of
robots in the team are used to test the loading of
the network. The team size is varied from one to
ten. The application makes the terrain exploration as
a single robot, if the team consists only of one robot.
Various ranges of communication links are used to test
the effectiveness of teamwork. The communication
range takes one of the values: 5, 10, 15 or 20 meters.
The laser has a range of 1.5 or 2 meters. It allows to
verify the functionalities performance with a larger
number of steps of the exploration process on the same
map. The experiments were performed three times
for each system configuration.
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(a). (b).

Figure 2. Dependence of the steps on the team size. The value of the laser range is: (a) 2 meters; (b) 1.5 meters.

The time measurement of the exploration is made
in steps, i.e the number of calls of the function that
changes the robot position. This function is triggered
periodically after a certain period of time. Thus,
a step is a convenient alternative to time. In addition,
the usage of steps metric allows to maintain usable
statistics of events that pass between sequential steps.

5.1. Time of the exploration
Fig. 2 shows the dependence of the average exploration
time for a team member on the number of robots in
the team. The graph shows that any team work helps
to reduce exploration time. In the beginning, both
graphs show a reduction of the number of steps, then
there is an increase in steps quantity. This is due to
the fact that the robots have to excessively agree on
the choice of a goal in bigger teams. As can be seen
from Fig. 3, a small team disperses at the beginning of
the exploration and explores non-overlapping areas of
the terrain. However, an excessive number of robots
in the team causes the problem of determination of
the non-overlapping areas. So robots are required to
negotiate the rescheduling of their goals.

The graph also shows that the decrease in the com-
munication range increases the number of steps that
are required to complete the terrain exploration. Some
scans from the other robots could not reach the robot
because of lack of communication link due to the small
value of the communication range. That is, the robot
is forced to explore the given area by itself. It increases
the overall time of the exploration.
Comparison of Fig. 2(a) and Fig. 2(b) shows that

the ratio of the steps number and the team size re-
mains constant regardless of the laser range. However,
reducing the value of laser range increases the total
number of steps. If the laser has a shorter range, then
each scan provides less information about the environ-
ment. Thus, it is necessary to make larger movements

(a). (b).

(c). (d).

(e). (f).

Figure 3. The resulting paths after the explo-
ration. The laser range of the first column is 2 me-
ters, the second column is 1.5 meters. Rows are sepa-
rated by team size: (a)+(b) 1 robot; (c)+(d) 2 robots;
(e)+(f) 5 robots.
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and get more scans to obtain a complete map of
the terrain.

5.2. Plan generations
Fig. 4 shows the frequency with which the applica-
tion is launching a new request for a new generation
of the plan. A plan generation runs periodically by
a timer part of the application, as described in Sec-
tion 4. In addition, it can be run by a request from
an another team member. In this implementation, if
two robots have the goal at the same area, the robot
with a higher priority of the goal sends a request to
the robot with a lower priority to select a new navi-
gation goal and generate a plan to the selected goal.
The launching frequency of generation of the plan is
20 steps in the application. The graphs shown on
Fig. 4 contain all plan generations, which had one
member of the robot team during complete explo-
ration of the environment. Thus, all function values
under the value of 20 steps means that the corre-
sponding plan generation is launched on request from
an another robot.

Fig. 4(a) shows that a single robot starts a process
of path generation by approximately the same inter-
vals. The increase of the team size leads to the fact
that robots can compete for the goals in a particular
region of the terrain. This can have both positive and
negative effects.
Let’s consider the situation of the terrain explo-

ration by a team that consists of ten robots and
the communication range is 20 meters. This means
that all robots agree on the choice of goals with
the other robots. The first low part of the graph shown
in Fig. 4(d) corresponds to Fig. 5(a). The robots start
the goal selection. However, the current implementa-
tion of the goal choice requires to select the goal that
does not lie close to the goals of other team members.
This means that the distance between the selected
goal and goal of another robot should be greater than
the laser range. An example of such area is depicted
in Fig. 5(a) as the yellow circle.

If each robot chooses a goal which does not overlap
with the goals of the other robots, the plan generation
is invoked periodically by the timer thread. That is,
the robot does not encounter other robots and it made
the right goal choice. The straight part of the plot
with a step value, which is equal to 20, corresponds
to Fig. 5(b).

Then, most of the terrain is explored and the robots
are in a small unexplored part of the environment (see
Fig. 5(c)). The weak point of the implemented simple
prioritizing between the robots appears. At this point,
the frequency of plan generation begins to increase.

Moreover, increasing the number of plan generations
leads to increase in the number of steps that are
necessary to complete the terrain exploration. It then
leads to increase of the total exploration time.

6. Conclusion
This paper addresses the problem of communication
in distributed multi-robot teams forming a mobile
ad hoc network. A list of requirements for a routing
protocol was drawn up. The comparative analysis
of routing protocols has shown that AODV routing
protocol is most suitable. In addition, the analysis of
three MOMs was conducted and the nanomsg library
was chosen as the most suitable for implementation.
Multi-robot exploration has been selected as a proof-
of-concept task. The general structure of the robot ap-
plication which carries out exploration of an unknown
environment in a multi-robot team and which commu-
nicates with other robots employing AODV has been
proposed. To verify the proposed architecture and
offered tools the application has been implemented
and has been tested by series of experiments. Thus,
the paper describes the architecture of the application
and possible means of implementation in a general-
ized form. The specific implementation can be done
for different systems and written on a wide range of
languages.
In future, this application will be used for testing

on the group of real robots that solves the problem
of the exploration of an unknown environment. Goal
allocation was not addressed in the paper as it was out
of scope of it. Analysis and comparison of a variety
of sophisticated goal allocation mechanisms will be
another stream we would like to go in future.
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