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Abstract. Motivated by the hype around driverless cars and the challenges of the sensor integration
and data processing, this paper presents a model for using a XBox One Microsoft Kinect stereo camera
as sensor for mapping the surroundings. Today, the recognition of the environment of the car is mostly
done by a mix of sensors like LiDAR, RADAR and cameras. In the case of the outdoor delivery
challenge Robotour 2016 with model cars in scale 1 : 5, it is our goal to solve the task with one camera
only. To this end, a three-stage approach was developed. The test results show that our approach can
detect and locate objects at a range of up to eight meters in order to incorporate them as barriers in
the navigation process.
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1. Introduction
In addition to the extensive launch of full electric
vehicle (fev) autonomous driving is deemed to be a
key research and development trend in the automo-
tive industry. The entire industry is working on the
topic and has already developed first solutions for
automatic braking, line keeping (i.e. AUDI “Active
lane assist” or BMW “Active Assist”) or even autopi-
lots for driverless cars like Tesla Motors’ “Autopilot”
or Google’s “Driverless Car” [1]. The used naviga-
tion and self-driving algorithms run on maps [2] and
require very accurate digital (geo-)data of the envi-
ronment [3]. Therefore, the spatial coverage of the
surroundings as a basis for autonomous navigation of
the vehicle is common to all applications.
Consequently, autonomous driving – regardless of

the respective task such as automatic braking, adap-
tive cruise control, lane keeping or autonomous driving
– requires detection and imaging of the space which it
will pass through. Photo cameras, LiDAR-, RADAR-
or other sensors continuously detect and measure the
surrounding of the car, creating a digital spatial image
of the area (map). Combined with positioning ser-
vices like GPS or Galileo, the location of the vehicle
can be determined and set in relation to surrounding
objects such as other vehicles or obstacles. However,
it is not an ordinary cartographic map resulting from
the permanent mapping process but digital images
that are stored temporarily as server frames for the
navigation. The navigation of the car finally relies on
mathematical functions (algorithms) to pass through
the digital and real space on the shortest (spatial) or
fastest (time) way.

This paper addresses the issue of the space detection
which is considered as an essential basis of autonomous
driving and robot navigation (see for example [4]) and

describes the use of a Microsoft X-Box One Kinect
stereo camera for autonomous driving for the outdoor
delivery challenge Robotour 2016 (robotika.cz). We
present an approach for mapping the surroundings
including the three steps (1) 3D capturing, (2) pro-
jection and filtering and (3) object detection. The
hardware and the approach are implemented on a four
wheel drive off-road buggy, scale 1 : 5.

The main hardware consists of a Congatec TS180
COM Express module. For the main processing, it
communicates with the X-Box One Kinect and a
Raspberry Pi and displays the crucial information
on a Krämer V-800 Touchscreen. The Raspberry Pi
reads the sensor values from the GPS and the Bosch
BNO055 and transmits them to the Congatec module.
It receives the steering and speed values from the Con-
gatec module, which are transmitted to the Freescale
KL25Z microcontroller, which in turn controls the
RC-Car model via PWM signals.

2. Approach
The development path of the approach to map the
surroundings for an autonomous driving vehicle should
be well-defined to avoid inconsistencies. The first step
is answering the question which hardware will be
used to detect objects. With the goal to use only a
Kinect camera as sensor, the approach relies on the
processing of the depth, and standard images. Both
data represent a 2D respectively 3D model of the
environment. The approach is characterised in three
development steps:
• 3D capturing,
• projection,
• object recognition.
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Figure 1. spatial mapping of the current surroundings.

It is developed to simplify complex processes, describe
them in a proper way and visualize all of the main
development steps in a manner that is easy to un-
derstand. According to the development steps, the
approach is divided into three processes, see Figure 1.
At first, the Kinect camera films the space in front
of the vehicle in order to gather potential obstacles.
The second step contains the projection of the depth
images on a 2D ground plane. At last, the obstacles or
object will be recognized during the third step. The
three main steps will be explained below.

3. Related work
In 2002 Sebastian Thrun (see [5]) showed that the
problem of terrain mapping is to generate a spatial
model of a robot’s or vehicle’s environment using
sensors and cameras. Concerning this point there are
several more subproblems:
• measurement noise,
• robot must choose its way during mapping process,
• environment changes over time,
• possibly the hardest problem — the so called data
association problem: correspond sensor measure-
ments to the same physical object in the real world.
“Mapping is largely considered the most difficult

perceptual problem in robotics.” [5, p. 6]. In 1989
Herbert et al. already presented the so called locus al-
gorithm to build terrain maps based on a single active
range sensor, by “computing the intersection of the
surface observed by the sensor with the vertical line
passing through (x, y)” [6, p. 998]. Frankhauser et
al. [4, p. 2] introduced an elevation mapping approach
from a “robot-centric perspective” with relative dis-
tances to the robot and a permanent update process
of the entire elevation map with information about
the motion of the robot.

Kleiner and Dornhege presented their autonomous
driving vehicle for Urban Search and Rescue (USAR)
with two different methods. First the rapid map-
ping of a large-scale environment by wheeled robots,
and second the mapping of rough terrain by tracked
robots [7].

Hornung et al. [6] developed an open source library
to represent the environment in memory using octrees.
The cells of the discretized space can have one of the
following states: unknown, free or occupied. To map
the sensor data into the octree they use a probabilistic
sensor model.
Thrun et al. [8] describes Stanley, the winner of

the 2005 DARPA Grand Challenge. The robot was
built by Stanford University researchers and uses laser

Figure 2. Overview of the Kinect camera.

range finders as well as RADAR sensors for sensing
the environment. The evaluation of the sensor data
is supported by artificial intelligence and machine
learning algorithms.

4. 3D capturing
As a 3D sensor is a rather expensive component, the
Kinect is a cheap alternative compared to the func-
tions it provides. The camera is doing most of the cal-
culations on its own SoC, thus reducing the processing
effort for the main unit. The first version of Microsoft
Kinect camera was developed by Prime Sense, an Is-
raeli 3D sensing company, which was bought by Apple
in 2013. After that, Microsoft created its own system
based the existing Prime Sense Technology [9].

4.1. Overview
The Kinect camera has an array of sensors, which
can be divided into three categories: a depth sensor
(green), a colour sensor (red) and an audio sensor
(blue), as seen in Figure 2. The audio sensor is not
used for the 3D reconstruction. The colour sensor
consists of a CMOS camera with an infrared light
filter. The main use of the colour sensor is the track
detection. The colour image can be mapped with
the depth information, although the resolution of the
colour sensor is higher than that of the depth sensor.
That is the reason why there are multiple colour pixels
per one depth pixel. If there are more depth pixel,
than colour pixels, the colour pixels need to be split
into multiple smaller pixel, with the same information.
The depth sensor consists of a CMOS camera and an
infrared led blaster. The CMOS camera is filtered so
that it just sees near-infrared light which is emitted
by the infrared led blaster. All the information is
processed in a specially designed SoC (Figure 3). This
allows the SoC to process a depth map containing all
the depths for every pixel and map the colour pixel
to it. The result of the processing is a data stream
containing an audio, a video, and a depth stream.

29



M Steininger, C. Stephan, C. Böhm et al. Acta Polytechnica CTU Proceedings

Figure 3. 3D reconstruction of the Kinect [11, 12].

4.2. 3D reconstruction
There are multiple ways of reconstructing the depth
information from an image. The classic way needs
two calibrated cameras at a defined distance. This
allows for calculating the distance to the object with
trigonometry formulas. The difficulty will be in dif-
ferencing the objects resulting in the so called corre-
spondence problem which “refers to the problem of
ascertaining which parts of one image correspond to
which parts of another image, where differences are
due to movement of the camera, the elapse of time,
and/or movement of objects in the photos.” [10].
The Kinect overcomes this problem by using a

method called “Time of Flight”. In this method the
travel time of infrared light, which is emitted by a led,
is measured for each pixel, as seen in 3.

“A strobed infrared light illuminates the scene, the
light is reflected by obstacles, and the time of flight
for each pixel is registered by the infrared camera.
Internally, wave modulation and phase detection is
used to estimate the distance to obstacles (indirect
ToF)” [13].

The problem is that the infrared light can be washed
out by other near-infrared light sources like sunlight,
resulting in the Kinect not being able to detect the
infrared light and losing the depth information.

5. Projection and filtering
The Kinect camera is mounted on the chassis in an
arbitrary fixed angle, tilted to the cars chassis. The
exact angle in which the camera is mounted to the
ground is not known. It can be measured, but to
be independent from that setting, the ground plane
coefficients, which are returned from the Kinect, are
used. The coordinate system of the returned 3D point
cloud (as camera coordinate system in the following;
indicated with a car subscript) does not match with the
coordinate system of the car (as car coordinate system
in the following; indicated with a camera subscript). In
Figure 4 both coordinate systems are shown.
The body-frame which can be requested from the

camera contains a four-dimensional vector represent-
ing the floor coefficients by ~pcoeff = (A;B;C;D).

Figure 4. The camera coordinate system (green) and
the car coordinate system (blue) [11, 12].

These coefficients are combined in (1) to receive the
plane equation for further mathematical operations:

0 = Ax+By + Cz +D (1)

In a first step, the distance of every point to the
ground is calculated. A point is considered to be a
part of the ground if a certain limit is not exceeded.
Therefore they are removed from the point collection
if the distance to the ground is smaller than a certain
distance. The remaining points are processed in the
following steps.
In the next step, each frame of the Kinect has a

resolution of 512 by 424 and can thereby result in a
large amount of 3D-pixels. A pixel is returned, if it
is in the specified range of the camera. The nearest
distance the camera returns a pixel for is about half a
meter. The maximum distance is about eight meters.
So there are quite a large number of points waiting
to be computed. The rather small computing system
with limited processing power on the car must handle
this in real-time. For the presented project, a real-time
reaction is defined with a latency of a few hundred
milliseconds. To reach this goal, one issue is making
the algorithm faster. This could be realised by:
• removing as many points as possible to save energy

and processing effort converting the points from one
coordinate system to another,

• adjusting processes how the data is processed step
by step,

• using a programming language with small process-
ing overhead.
To reduce the further processing effort the points get

filtered next. A new parameter named MinDistance
is introduced in the GUI (Graphical User Interface)
where the points must have a greater distance from
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the camera than that value, to prevent recognising
parts of the car as obstacles. This is needed due to
the current setting of the car. There may be points
above the height of the car so that the car can drive
beneath. These points get removed if they are above
a maximum height from the ground plane which is
defined as a parameter named MaxHeight. Obstacles
far away are also not interesting for the process at the
moment. In the same way points far away are also not
interesting and get filtered with an allowed maximum
distance named MaxDistance.
In this section some functions are introduced to

simplify the explanation of the coordinate transforma-
tion. The first three equations deal with projections.
Project a vector v onto another vector vonto (2), also
a vector v onto a plane E : 0 = (~x− ~r) · ~n (3) and a
point with position vector ~x onto a plane (4):

fv2v(~vorig, ~vonto) : ~vproj =
(
~vorig �

~vonto
|~vonto|

)
(2)

fv2p(~vorig) : ~vproj = ~vorig − fv2v (~vorig, ~n) · ~n (3)
fp2p(~xorig) : ~xproj = ~xorig − fv2v (~xorig − ~r, ~n) (4)

Next the normalisation is defined in (5):

fn(~vorig) : ~vnorm = ~vorig
|~vorig|

(5)

Since the source coordinate system of the Kinect is
in three dimensional space and the destination system
is only two dimensional, it is necessary to project
every detected 3D-pixel onto the ground plane. In the
three dimensional coordinate space of the Kinect we
define a two dimensional coordinate space for the new
coordinate system. The new coordinate system can
be seen as a plane in the original space. Therefore an
origin and also two vectors for the two axes of that
coordinate system are needed.

The two dimensional coordinate system for the ob-
stacle detection is implemented within the three di-
mensional coordinate system of the Kinect camera.
The camera position perpendicular above the ground
is origin: Ccamera = fp2p(O) with O as the origin of
coordinate system. The axes are defined as ex =
fn (fv2p ((0; 0;−1))) and ey = fn (fv2p ((−1; 0; 0))).
In Figure 4 you see the orientation of the axis.

Now, (6) can be used to project all points into the
new car coordinate system:

Pcar =
(
fv2v (Pcamera − Ccamera, ex)
fv2v (Pcamera − Ccamera, ey)

)
(6)

Next, the obstacle detection will use these projected
points and create a barrier along the nearest edge of
the recognized obstacles.

6. Obstacle detection
When implementing algorithms for autonomous ve-
hicles it is mandatory to detect and tag obstacles in
front of the craft. As described, a depth image is
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Figure 5. Logarithmic distance scaling for image size
reduction purposes.

provided by the Kinect camera from where each sin-
gle depth pixel is projected to a ground plane with
each having the correct distance and position to the
camera’s point of view during the first stage of image
processing.

As a first step, the depth points contributed by the
Kinect camera and the projection to the ground plane
are transformed into a 2D image. The next three steps
described in this section include:
• distance scaling,
• Gaussian functions,
• and the actual object and obstacle detection.

6.1. Distance scaling
The project team faced problems concerning comput-
ing power: the large number of pixels coming from a
depth frame provided by the Kinect camera exceeded
the available and limited hardware.
For the purpose of reducing the computing effort

for processing the Gaussian function (see subsection
6.2) the project team decided to scale the projected
image’s size by its height logarithmically. As shown
in Figure 5, the scaling of distances allows to have
more detailed image information in a closer range to
the camera’s origin than in a larger distance to this
specific point.
The distance we get from the Kinect Camera is a

floating point number, the index we need to reference
a pixel within and on the image is an integer. If the
distance is only rounded to the next integer value there
is one pixel per meter. Because of this a parameter
is introduced which represents the resolution of the
image’s distances. The scaled value is divided by this
value to get the index as an integer, after rounding
of this new integer we get the correct index value for
the image.
For example, 0.5m in reality are mapped to an

index value of 0.585 after the scaling, while 8m in the
real world, which is the Kinect camera’s maximum
recognition distance, correspond to an index value
3.171 logarithmically scaled.
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Figure 6. Gaussian distribution in 2D.

As can be seen in Figure 7 the opening angle of
the camera is segmented with a specific resolution,
which can be set as a parameter. Every segment
is mapped to a single rectangular column into the
projected image.

The advantage of this approach is that near distance
pixels are richer in detail than more distant pixels.

6.2. Gaussian function
The next step is to smoothen the depth image to
reduce single error pixels or noise and smoothen pixel
clouds for further and more precise computations and
calculations. Although there are several options for
smoothing images, the chosen solution is the Gaussian
filter

G(x, y) = 1
2πσ2 e

− x2+y2

2σ2 (7)

In (7), the Gaussian function for two dimensions is
shown. Where x is the distance from the origin on the
horizontal axis and y is the distance from the origin on
the vertical axis, and σ is the standard deviation of the
Gaussian distribution. The distribution can be seen
in Figure 6 for two-dimensional Gaussian functions.

This formula produces a surface of concentric circles
with a Gaussian distribution from the center point.
The new value of each pixel is set to a weighted average
of that specific pixel’s neighborhood. The original
pixel’s value receives the highest Gaussian value and
neighborhood pixels receive smaller weights as their
distance to the original pixel increases. This results
in a blur effect [14, 15].
Figure 7 shows three identical depth frames which

are already projected to a ground plane (you see the
frames in a top view) and transformed into a gray
image. On the left-hand side, the single frame is
displayed without any filtering or blurring. There are
many false pixels, noise and distortion.
A Gaussian filter is already used in the middle

frame, nevertheless quite a lot noise and other false
pixels can be seen. The approach works in practice but
still needs a little fine tuning. Therefore a smoother
configuration of the Gaussian settings was used.

The third frame on the right-hand side displays very
little distortion, noise and false pixels, but provides
clearly identifiable pixel clouds. These pixel clouds
mostly represent objects or other obstacles in the
range of the Kinect camera.

1 2 3

Figure 7. Three identical frames with no Gaussian
filtering in frame 1, minimal Gaussian filtering in
frame 2 and for the project’s obstacle detection best
Gaussian filtering settings in frame 3.

6.3. Detect obstacles
The last step before actually being able to detect
obstacles is removing unnecessary pixels which still
are in the image after applying a Gaussian filter. In
the scope of the project a parameter was added to
set a tolerance for still existing false or error pixels:
threshold. It’s inevitable to do so, due to the fact that
there are not only black and white pixels anymore
(values 0 and 255) because of the Gaussian filtering
but also values in between.
The final step is to find objects in the distance-

scaled and Gaussian filtered image. After preparation
of the given depth image with Gaussian filtering and
logarithmic distance scaling, the final step for finding
and detecting objects in range is to find pixel clouds
with a defined minimal distance (parameter in algo-
rithm: minDistanceBetweenObstacles in meters) to
other clouds and therefore to other obstacles.
When a pixel cloud (respectively an obstacle) is

detected with no other obstacle in range of minDis-
tanceBetweenObstacles, it is marked as a detected
obstacle.

7. Conclusions
The autonomous driving requires the continuous map-
ping of the surroundings. The presented approach and
the hardware setting show that the mapping can be
done with a Kinect camera in the case of model cars
in a scale up to 1 : 5. With the 3D capturing of the
surroundings, the projection and filtering and obstacle
detection, it is possible to get a temporary map of the
car’s environment as a basis for the navigation pro-
cess. The navigation itself relies on the A*-algorithm
and uses the projected map including the detected
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obstacles as the digital weighted spatial information.
In a next step, we are planning to test the whole
configuration and the navigation process under dif-
ferent conditions, i.e. different surfaces or different
weather conditions. The aim is to obtain feedback
on the use and the performance of the stereo camera
and the navigation algorithm. Beyond the self-driving
car, the presented approach can be implemented in
other vehicles, like unmanned aerial vehicles (UAV),
autonomous underwater vehicles (AUV) or even in
robots for different services.
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