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Abstract. The quasicontinuum (QC) method is a computational technique that can efficiently
handle atomistic lattices by combining continuum and atomistic approaches. In this work, the QC
method is combined with an adaptive algorithm, to obtain correct predictions of crack trajectories in
failure simulations. Numerical simulations of crack propagation in elastic-brittle disordered lattices are
performed for a two-dimensional example. The obtained results are compared with the fully resolved
particle model. It is shown that the adaptive QC simulation provides a significant reduction of the
computational demand. At the same time, the macroscopic crack trajectories and the shape of the
force-displacement diagram are very well captured.
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1. Introduction
Discrete particle models can effectively capture com-
plex material responses, especially localized phenom-
ena such as damage or plastic softening. The main dis-
advantage of particle-based approaches is that a huge
number of particles is needed to describe the response
of large-scale physically relevant models. This results
in an extensive system of equations, which is expen-
sive to solve. Furthermore, the process of assembling
this system is also computationally expensive because
all discrete connections must be individually taken
into account.

A quasicontinuum (QC) based method can remove
both of these disadvantages by combining continuum
and atomistic approaches. In order to simulate crack
propagation, the QC method needs to be combined
with an adaptive algorithm that allows crack growth
in arbitrary directions and initialization of new cracks.

In this work, the material is represented by particles
interacting via elastic-brittle links forming a disor-
dered two-dimensional lattice. Only axial interaction
between particles is considered and the behavior of
links is assumed to be perfectly elastic-brittle, with
link breakage occurring at a critical level of tensile
strain.

2. QC method
The QC method can efficiently handle high-resolution
particle models by combining continuum and discrete
approaches. This method was originally proposed in
1996 [1] for regular atomistic lattices with long-range
interactions. Since that time, the QC method has
been widely used and extended to applications for a
variety of materials represented by regular lattices [2].
An extension of the QC method to irregular lattices
has recently been developed by the authors [3].

The main idea of the QC method is to reduce the
number of degrees of freedom (DOFs) and the asso-
ciated computational cost without losing the exact
atomistic description in regions of interest. Therefore,
two types of regions in the investigated domain are
considered. In regions of high interest, the pure parti-
cle approach is used and all particles carry their own
independent DOFs. By contrast, in regions of low
interest, continuum assumptions are applied and the
computational model is significantly simplified.
The procedure that results from the QC method

can be briefly presented in the following three steps:

(1.) Interpolation
(2.) Summation
(3.) Adaptivity

2.1. Interpolation
Interpolation of DOFs is used in regions of low interest.
To simplify the full particle model, only a small subset
of particles is selected to represent the entire system.
These so-called repnodes serve as the nodes of a back-
ground triangular mesh that is used to interpolate
the DOFs of other particles in regions of low interest.
On the other hand, in regions of high interest, all
particles are selected as repnodes to provide the exact
particle representation. This interpolation leads to a
significant reduction of the number of DOFs without
losing the exact particle description in regions where
a high resolution is needed.

2.2. Summation
The interpolation provides a significant reduction of
the number of DOFs but all particles still need to be
visited to construct the system of governing equations,
which makes the process computationally expensive.
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The summation rule can be applied in order to elimi-
nate the requirement of visiting all particles during
the assembly of the system. If the summation rule
is adopted, the contribution of all particles in each
interpolation triangle is estimated based on sampling
of the links that surround one single particle and
properly scaling the contribution. This makes the
computational process faster but some problems can
occur on the interface between regions of high and
low interest.

Because of the interpolation and the summation, the
deformation is considered as constant within each in-
terpolation element in the regions of low interest while
the deformations of individual links in the regions of
high interest are evaluated exactly. Consequently,
forces of nonphysical character, called the ghost forces,
appear on the interface between the regions of low
and high interest [4].
In this work, the summation procedure is realized

by a homogenization of links contributing to the in-
terpolation elements. To eliminate the ghost forces,
some specific links are selected to be processed ex-
actly, in order to capture the interface between the
fully resolved and interpolated domains.

2.3. Adaptivity
Adaptivity allows to adjust the regions of low and
high interest during the simulation process. The type
of region can be changed by adding repnodes before
each step. An appropriate modification of the regions
of high interest leads to a substantial increase of ac-
curacy. Moreover, in specific cases such as simulation
of crack propagation or damage evolution, adaptivity
is necessary in order to represent the correct phys-
ical behavior. After the insertion of new repnodes,
a new triangulation of the interpolation mesh can
be constructed, in order to improve the accuracy of
interpolation and summation in areas of low interest.

3. QC-based approaches
In this section, the exact approach and two approaches
based on the idea of QC with different levels of sim-
plification are introduced.

3.1. Fully resolved approach
This approach does not use any simplification. Every
single particle represents a node with independent
DOFs. All links are taken into account explicitly and
contribute directly to the stiffness matrix. Conse-
quently, this approach provides the “exact” result,
which is used as a reference solution for evaluation
of accuracy and efficiency of the following, simplified
approaches.

3.2. QC approach with interpolation
In this approach, only the interpolation rule is used
to simplify the full particle model. In the regions of
high interest, all particles are selected as repnodes.

By contrast, in the area of low interest, only the parti-
cles forming the vertices of interpolation elements are
selected as repnodes. All remaining particles are kept
in the model and their DOFs are linearly interpolated
by using the underlying interpolation mesh. Such
particles are called hanging nodes because their DOFs
are not independent but are “hanging” on appropriate
repnodes.

All link connections are considered explicitly in the
whole domain.

3.3. QC approach with interpolation
and homogenization

In this approach, 2D finite elements are used not only
to interpolate DOFs but also to replace the stiffness
that corresponds to the microstructure. Consequently,
a substantial number of links and hanging nodes can
be removed from the particle model.

Material properties of 2D elements are identified by
homogenization of the effective elastic stiffness ten-
sor De representing the microstructure of the links.
Applying the equivalence of the overall virtual work
expressed for the continuous material and for the
microstructure represented by discrete links, the fol-
lowing formula for the effective elastic stiffness tensor
can be derived:

De = 1
V

Nt∑
i=1

LiEAini ⊗ ni ⊗ ni ⊗ ni (1)

Here, ni is the unit vector specifying the direction
of the given link, E is the Young modulus, A is the
cross-sectional area and L is the length of the link.
The summation is taken over Nt links occupying vol-
ume V .
The effective stiffness tensor De can be evaluated

globally for all elements, or locally for each element
separately. Afterwards, the material parameters of
2D elements can be identified as isotropic, orthotropic,
or arbitrarily anisotropic. Different homogenization
procedures for disordered lattices with normal inter-
actions are described in [3].
In this work, only the most accurate homogeniza-

tion rule with a local anisotropic stiffness tensor and
an arbitrarily anisotropic material is used. Evaluation
of the effective material stiffness tensor given by (1) is
done for each element separately. The stiffness tensor
of each element is obtained only from the contribu-
tions of the parts of the links that are located in that
particular element.

4. Adaptive algorithm
Adaptivity is one of the key ingredients of the QC
method. The area of high interest and the geome-
try of interpolation mesh can be arbitrarily changed
during the simulation to optimize the accuracy and
computational costs. Furthermore, for QC simulation
of materials with softening or damage, an adaptive
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algorithm is required to be able to predict the exact
failure mechanism.

In this paper, it is assumed that cracked links tend
to form a macroscopic crack. The QC adaptive algo-
rithm is designed to be able to simulate the growth of
existing macroscopic crack as well as the initialization
of new cracks. In each simulation step, this algorithm
is able to change both the area of high interest and
the interpolation elements in the area of low interest.

The overall algorithm of an adaptive CQ simulation
is organized as follows:

Algorithm 1 Adaptive QC simulation
1: load input geometry
2: generate interpolation mesh
3: calculate local stiffness tensors and material pa-

rameters
4: assemble stiffness matrix
5: assemble load vector
6: repeat
7: solve one elastic step
8: break link with maximal strain
9: update area of high interest

10: update interpolation mesh
11: update local stiffness tensors and material pa-

rameters
12: update stiffness matrix and load vector
13: until <stopping criterion>
14: postprocessing

4.1. Area of high interest update
The change of the area of high interest is realized
around newly cracked links to allow crack growth.
When a new link is broken, all particles within a given
updating radius are labeled as repnodes. This update
is realized only if the breaking link is located not too
far from existing macroscopic cracks. Therefore, a
number of previously cracked links within a checking
radius is evaluated and the update is realized only if
a given critical number of previously cracked links is
reached. Consequently, the area of high interest is
updated frequently but not necessarily in all steps.
This allows to account not only for crack branching
but also for nucleation of new macroscopic cracks in
different locations.
This procedure frequently requires searching for

particles within a given radius, which can be time-
consuming for large sets of particles. Therefore, it is
convenient to store particles in an octree structure
that enables fast spatial searching.

4.2. Interpolation mesh update
If the area of high interest has changed, it seems natu-
ral to change the geometry of the interpolation mesh
as well to provide a better shape of interpolation ele-
ments at the interface between areas of low and high
interest. However, this change is extremely expensive,

as explained in section 4.3, and does not bring any sig-
nificant improvement of accuracy. Therefore, it turns
out to be more effective to use relatively small ele-
ments with fixed geometry instead of changing the size
of elements during the simulation. Only the elements
that are completely covered by the extended area of
high interest become useless and can be removed from
the model.
If the interpolation elements are not changed, the

updating radius must be larger than the size of in-
terpolation elements to ensure that the nodes of one
interpolation element are not located on the opposite
sides of the crack (otherwise, special finite element
techniques such as XFEM must be used).

4.3. Stiffness tensors update
Generally, there are three reasons why stiffness tensors
must be updated.
(1.) Breakage of a link
(2.) Change of a region of high interest
(3.) Change of the interpolation mesh
The breakage of one link occurs in each simulation step.
The resulting update of stiffness tensors can be simply
realized by subtracting the stiffness contributions of
broken links from all corresponding stiffness tensors.
The change of the area of high interest is realized

by adding new repnodes. Consequently, the type of
ending particles of some links is changed. All links
changed to type repnode–repnode and some specific
links changed to type repnode–hangingnode need to
be solved explicitly from this moment. All such links
must be identified and their stiffness influence is sub-
tracted in the same way as for broken links.

The change of the geometry of interpolation mesh re-
quires a recalculation of local stiffness tensors. This re-
calculation is extremely demanding because all links
must be visited. Even if the mesh is changed only
locally near a newly created area of high interest and
only some elements are affected, it is not easy to
identify which links contribute to these elements and
this step significantly slows down the simulation time.
The recalculation of stiffness can be sped up by storing
the information of element contributions during the
assemblage of stiffness tensors at the beginning of the
simulation. But this can be done only at the price
of additional memory demands, which may become
critical for large numbers of links.

5. Results
To assess the efficiency and accuracy, the presented
adaptive QC algorithm has been used to simulate
failure in two dimensions. The L-shaped specimen
with dimensions 100×100mm (which may correspond
to a joint of a frame) is fixed at the bottom section
and loaded by prescribed vertical displacements im-
posed at the right end section; see Figure 1. As a
result of this loading, the non-convex corner is opened
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Figure 1. Interpolation elements and area of high interest (black) and broken links (red) in the first (left), 100-th
(middle) and the last step of simulation (right).
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Figure 2. Broken links computed with exact particle
approach A0 (black) and with QC approach with local
anisotropic homogenization A3 (red).

and cracking of links is expected to start in this re-
gion. Therefore, a small initial area of high interest
is prescribed around this corner; see Figure 1 (left).
The random microstructure is generated with a den-
sity that corresponds to 67 particles along the short
edge, leading to a total of 19,000 particles connected
by 64,064 links. Basic characteristics of models used
by full particle and QC simplified simulations are
listed in Table 1. Material parameters are considered
to be the same for all links.

As expected, cracking starts in the non-convex cor-
ner. Duringcrack growth, the area of high interest is
increased around newly broken links. Interpolation
elements completely covered by the area of high inter-
est are removed from the model, but the geometry of
the remaining interpolation elements is not changed.
The areas of high interest in different loading steps
are depicted in Figure 1. Overall 240 simulation steps
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Figure 3. Force-displacement diagrams computed
with exact particle approach A0 (black) and with QC
approach with local anisotropic homogenization A3
(red).

A0 A1 A3
Particles 19,000 19,000 2,199
Links 64,064 64,064 2,929
Elements 0 1,542 1,542
Repnodes 19,000 1,665 1,665
Hnaging nodes 0 17,335 534
DOFs 37,799 3,129 3,129

Table 1. Numbers of particles, links, elements, repn-
odes, hanging nodes and unknown DOFs for exact
approach (A0), QC approaches with interpolation
only (A1) and QC approach with local anisotropic
homogenization (A3).

are performed until the specimen is almost completely
split; see Figure 1 (right).

Three different levels of simplification are used and
compared.

• Full (exact) particle approach (A0).
• QC simplified approach with interpolation only
(A1).
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• QC simplified approach with interpolation and local
anisotropic homogenization (A3).

The results obtained for both QC simplified ap-
proaches are almost equivalent. Both approaches pre-
dict the same broken links in the same order. Gen-
erally, approaches involving homogenization tend to
a stiffer response in comparison with the interpola-
tion approach. In this case, the influence of homoge-
nization is negligible and the maximum difference in
relative stiffness is just 0.24 %.
In comparison with the exact approach, the QC

approaches give a slightly stiffer response. The relative
stiffness error of the initial elastic branch is 11.8 %.
The maximum relative stiffness error is below 18 %
during almost the whole simulation. Only in the last
six steps (when the specimen is almost completely
split) the error increases up to 25 %. The prediction
of cracked links is not perfectly exact, but more than
90 % of links are broken correctly and the difference
in the final shape of the macroscopic crack is almost
negligible; see Figure 2.

The simplified results are also very accurate in terms
of the force-displacement diagram. Despite a stiffer
elastic response, the trend of the unloading branch is
very well captured and the shape of the QC simpli-
fied force-displacement diagram resembles the exact
solution; see Figure 3.
Times consumed by individual parts of the simu-

lation for various approaches are listed in Table 2.
The initialization procedures are realized just once at
the beginning of the simulation. On the other hand,
the repeated procedures are realized in each simula-
tion step. For QC approach A1, with interpolation
only, the realization of QC simplification is relatively
fast, but the initial assemblage of the stiffness matrix
and load vector is extremely slow because of a huge
number of hanging nodes with interpolated DOFs.
By contrast, QC approach A3, involving local homog-
enization, needs a relatively long time to realize QC
simplification including local effective stiffness tensors
calculation. However, the initial assemblage is very
fast because the number of links and hanging nodes
is significantly reduced. For both QC approaches,
a long extra time is needed only at the beginning of
the simulation. This initial time becomes negligible
in simulations with a large number of repeated steps.
The most important fact is that each simulation step
of the simplified approach is twice as fast for A1 and
almost 19 times faster for A3 in comparison with the
full particle model.

6. Conclusions
This paper described a QC adaptive algorithm with
automatic changes of area of high interest designed for
simulation of crack propagation in disordered lattices.
The presented algorithm allows not only propagation
of an existing crack but also initialization of new
cracks.

A0 A1 A3
Times of initial procedures [s]:
QC simplification - 0.83 8.08

Assemble stiffness matrix 1.09 5.81 0.15
Assemble load vector 1.92 6.36 0.21

Times of repeated procedures [s]:
Solve one step 3.99 0.25 0.15
Update one step 1.08 2.31 0.12

Table 2. Time consumed by individual parts of sim-
ulation for various approaches.

The presented example has shown that QC based
approaches in combination with an adaptive algorithm
are able to capture the exact macroscopic crack trajec-
tory even if the area of crack propagation is not known
at the beginning of simulation. The force-displacement
diagram can be predicted with high accuracy in spite
of the fact that the initial elastic response of simplified
models is slightly stiffer. The adaptive extension of
the area of high interest has turned out to be sufficient
to obtain accurate results and a new triangulation of
interpolation mesh is not necessary.
The application of QC approaches provides a sig-

nificant reduction of the number of unknown DOFs
and of links used in numerical models. This reduction
leads to a significant speed-up of one simulation step,
at the price of an increased cost of the initial prepa-
ration (model simplification) before the first step. If
both interpolation and homogenization are applied,
the speed-up factor of one step is 18.8 and the whole
simulation of crack propagation (including 240 steps)
gets more than 15 times faster.
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