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Abstract. The paper deals with investigation on directional variations of mechanical response in
3D printed models of human trabecular bone. Sample of trabecular bone tissue was resected from
human donor and 3D model was obtained by X-ray computed tomography. Then a series of cubical
samples was prepared by additive manufacturing technique and tested by uniaxial compression loading
mode. Mechanical response was compared in nine different combinations of direction of 3D printing
and loading direction. The results show neglectible influence on the deformation response in elastic
region (stiffness) and significant changes of the behaviour in plastic region (stress and strain at yield
point, strain at full collapse).
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1. Introduction
In the regenerative medicine bone scaffolds serve to
support the bone healing process [1, 2]. Additive man-
ufacturing provides possibilities for manufacturing of
the scaffold structure with tailored properties. More-
over, mechanical response and topological properties
of additively manufactured stuctures may be inves-
tigated and optimised using experimental modeling
[3, 4]. However, direction of the 3D printing related to
the loading direction may influence the effective me-
chanical properties and therefore affect the reliability
of such analyses. In order to investigate the influence
of the printing direction a series of uniaxial loading
tests was performed on additively manufactured mod-
els of the human trabecular bone.

2. Materials and methods
2.1. Sample preparation
Trabecular bone tissue was extracted from a cadaver
human donor (male, 52 years, non pathological con-
ditions). The extraction was performed using hollow
drill using a low-speed drilling machine in direction
coaxial with column femoris. Diameter and length
of the resected sample were 18 mm and 40 mm, re-
spectively. The sample is depicted in Figure 1 The
resected tissue was then cleaned in ultrasonic cleaner
using detergent solution in order to remove bone mar-
row.

Figure 1. Trabecular bone sample resected from
human caput femoris. Scale bar 20 mm.

2.2. Tomographic scanning and
reconstruction

The extracted sample was then tomographically
scanned using TORATOM (unique patented tomo-
graphic facility placed in Centre of Excelence in Telc,
ITAM, Czech republic) [5]. For the irradiation X-ray
tube XWT 160 TCHR (X-Ray WorX, GmbH, Ger-
many) was used with tube voltage 90 kV and target
current 76µA. For the acquisition flat panel detec-
tor XRD 1622 AP 14 (Perkin Elmer, USA) was used.
Resolution of the detector was 2048 × 2048 px. The
tomographic setup is depicted in Figure 2. To achieve
sufficient magnification, the following geometry of the
tomographic setup was used: focus-detector distance
was 1200 mm and focus-sample distance was 60 mm,
which resulted in magnification 20 ×. Duration time
of the acquisition was 2000 ms per projection and
resulting pixel size was 10µm.
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Figure 2. TORATOM scanning setup.

Acquired tomographic projections were then re-
contructed using VG Studio software tool (Volume
Graphics, GmbH, Germany). From the reconstructed
matrix a cubical region of interest (ROI) with size
1000 × 1000 × 1000 px3 was selected for 3D print. Vi-
sualisation of the ROI is depicted in Figure 3.

Figure 3. Selected region of interest in the recon-
structed 3D matrix. Scale bar 10 mm.

2.3. Additive manufacturing
Subsequently, nine samples were manufactured using
3D printer, three in each group printed along different
axes. The samples were prepared at additive manu-
facturing facility placed at AGH University Krakow.
Custom modified device B9creator (B9creations, LLC,
USA) was used together with base material Vorex
resin (Madesolid, USA) with adition of photoabsorber
Sudan I (Sigma Aldrich, USA). Cubic samples with
edge length 10 mm were prepared (depicted in Figure
4). Resolution in the printed plane corresponded to
pixel size 30×30µm and the layer thickness was 30µm
as well. As typical thickness of human trabecula in the
selected location varies in range 120 to 160µm [6] at
least four voxels across the trabeculae thickness were
present in the printed model. Hence the 3D printer
resolution was sufficient to preserve all features of the
trabecular structure without scaling of the model.

Figure 4. Additively manufactured trabecular bone
structure. Scale bar 10 mm.

2.4. Uniaxial compression tests
The additively manufactured samples were then sub-
jected to uniaxial compression using a custom loading
frame [7]. Loading capacity od the loading frame
was 2 kN. Loading was provided by a stepper motor
attached to a harmonic drive and controlled by an in-
house control software based on LinuxCNC interface
[8]. The setup was instrumented by force transducer
(type U9b, HBM, Germany) with loading capacity
1 kN. The loading setup is depicted in Figure 5.

Displacement controlled compression tests with
loading rate 30µm · s−1 were performed. Final dis-
placement corresponding to overall strain 0.55 was
prescribed (entire available travel range of the loading
frame was used to ensure description of both elastic
region and plastic collapse of the cellular structure).
However in several tests the loading was stopped at
lower displacement due to the force drop which indi-
cated complete failure of the structure.

2.5. Strain measurement
Loading scene was captured by monochromatic CCD
camera AVT Manta G504B (Alied Vision GmbH, Ger-
many) attached to a bi-telecentric lens TZCR072 (Op-
toEngineering, Italy) at resolution 2452 × 2056 px
at 2 fps. For camera read out in-house acquisition
software [9] based on OpenCV library [10] was used.
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Figure 5. Custom loading setup for uniaxial compression tests.

Displacement of the loading supports was tracked by
custom DIC software tool [11] based on Lucas-Kanade
trancking algorithm [12].
The overall strain was measured optically based

on projections of the loading scene using Digital Im-
age Correlation algorithm (DIC). Due to the nearly
transparent nature of base material of the samples
the displacement tracking was not successfull at the
specimens’ surface and DIC was used for tracking of
the loading supports only.

3. Results
From the calculated displacements and force records
stress-strain diagrams were constructed and used for
comparison among the tested groups. The obtained
loading curves are depicted in Figures 6, 7 and 8,
where the samples were groupped with respect to
the loading direction in order to provide comparison
between different printing directions.
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Figure 6. Loading curves of samples loaded along
X direction.
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Figure 7. Loading curves of samples loaded along
Y direction.
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Figure 8. Loading curves of samples loaded along
Z direction.
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4. Conclusions
Based on the uniaxial loading tests of different sets
of 3D printed specimen of human trabecular bone
influence of printing and loading direction on defor-
mation behaviour was studied. Compared to previous
studies on deformation response of trabecular tissue
(human femur [13] or rat vertebra [14]) the additively
manufactured models exhibit similar behaviour up to
the first plastic collapse in terms of continuous linear
elastic region with smooth yield region.
The mechanical response was compared in terms of
effective Young’s modulus, yield stress and strain and
peak force at failure. Stress-strain diagrams of the 3D
printed models of trabecular bone were consistent in
the groups with each loading direction in terms of stiff-
ness (slope of the linear response). Highest peak force
was observed in samples loaded along the direction
of 3D printing in all three groups. In several samples
full collapse of the cellular structure occurred when
the loading axis was perpendicular to the printing
direction.
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