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Abstract. Macroscopic cross section generation is key part of core calculation. Commonly, the
data are prepared independently without a knowledge of fuel loading pattern. The fuel assemblies are
simulated in infinite lattice (with mirror boundary conditions). Rehomogenization method is based
on combination of actual neutron flux in fuel assembly with macroscopic data from infinite lattice.
Rehomogenization method was implemented into the macrocode Andrea and tested on a reference
cases. Cases consist of fuel cases, cases with strong absorber, cases with absorption rods, or cases with
reflector assemblies. Testing method is based on a comparisons of homogenized and rehomogenized
macroscopic cross sections and later on a comparisons of relative power of each fuel assembly. Above
that there is comparison of eigenvalue.
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1. Introduction and main
motivation

Calculation of main neutronic data for power nuclear
reactors is complicated multi-level process. Despite
steadily rising computational power of computers,
there is no way to calculate real fuel loading pat-
tern using accurate deterministic or stochastic codes.
This problematic is divided in two levels: prepara-
tion of macroscopic data and calculation real core
with macrocodes with diffusion or simplified transport
solution.
The data preparation process for fuel assemblies

is provided by deterministic or stochastic codes (mi-
crocodes). Deterministic codes solve transport equa-
tion (the SCALE Newt [1], the Helios [2]) and the
stochastic codes (the Serpent [3]) simulate the batch
of particles. The data for macrocodes are prepared
with simulation of identical fuel assemblies in infinite
lattice. This approach is called Standard Homogeniza-
tion Method. The method considered some simplifi-
cation which are not fulfilled in the real fuel loading
pattern. The simplifications are:
• zero neutron escape over the boundary of fuel as-
sembly,

• symmetrical distribution of neutron flux inside fuel
assembly,

• energy spectrum of neutron during data preparation
process is very different from real energy spectrum.
Comparison of neutron flux inside fuel assembly is

illustrated in figure 1. Fuel assembly is simulated in
infinite lattice (left) and next to the strong absorber
(right). The figure clearly shows that in simulated
fuel assembly next to the strong absorber is signifi-
cant neutron flux tilt, which can’t be considered by

Standard Homogenization Method.
The solution of unfulfilled assumptions (symetrical

distribution of neutron flux inside fuel assembly and
zero escape over the boundary of fuel assembly) of
standard data preparation process can be found with
using rehomogenization method. The rehomogeniza-
tion method is based on method cited in article of
Aldo Dall’Osso [4], who tested advanced spatial re-
homogenization. This method is based on a actual
distribution of neutron flux inside fuel assembly dur-
ing the full core calculation. The data prepared by
this method should better reflect spatial dependence
of neutron flux during the data preparation process
and the neutron escape from fuel assembly.

Since the rehomogenization method depend on fuel
pattern, it must be implemented in macrocode, where
are the data continuously edited with respect to cal-
culation of main neutron-physical characteristics.

2. Rehomogenization theory
The rehomogenization method can be divided into
two parts. In the first part, the neutron flux in the
fuel assembly is calculated. In the second part, the
macroscopic data are prepared with actual neutron
flux. Since the main intention of the method is to
ensure more realistic data in macrocode, there is need
to use data provided by macrocode itself during the
calculation.
The interface and mean neutron flux values were

used for the neutron flux distribution calculation in-
side fuel assembly, because the macrocode Andrea
calculate them. Neutron fluxes on the interfaces of
fuel assembly (interfaces E, NE, NW, W, SW, SE)
and mean value of neutron flux in fuel assembly were
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Figure 1. Distribution of neutron flux in fuel assembly simulated in infinite lattice (left) and behind strong absorber
(right).

used as input data for calculation of neutron flux
distribution.

2.1. Interpolation of neutron flux
Calculation of the neutron flux distribution can be
done by two dimension interpolation function. In
terms of the simple approach of interpolation, the
deviation of the neutron flux was interpolated using
the following polynomial functions:

Φ(x, y)−Φ = C1 · x+ C2 · y+
+C3 · (x2 + y2 − C) + C4 · (x2 − y2)+
+C5 · x · y.

(1)

Constants C1 to C5 are interpolation constants, con-
stant C is orthogonalization constant. To consider
local deformation in neutron flux (for example by cell
without fuel), the interpolated neutron flux for each
cell with coordinates (xb, yb) were multiplied by fac-
tor Φ∞

b
Φ∞ , where Φ∞b is neutron flux of cell b in infinite

lattice and Φ∞ is mean value of neutron flux in fuel
assembly simulated in infinite lattice.
Comparison of interpolated neutron flux with ref-

erence values obtained by simulation of case in deter-
ministic code shows that neutron flux cell data does
not agree with real distribution of neutron flux in fuel
assembly. It turns out that problem is in complete
solution of diffusion equation. Interpolation using
polynomial function can express only particular solu-
tion of diffusion equation, but it can not approximate
homogeneous part of solution.

2.2. Reconstruction of neutron flux
The reconstruction method of neutron flux is more
complicated approach in comparison with the interpo-

lation method. The reconstruction is based on solution
of two groups diffusion equation in fuel assembly:

∇2~Φ =
(

Σa1−νΣf1/kef
D1

−νΣf2/kef+Σg2g1
D1

−Σg1g2
D2

Σa2
D2

)
~Φ, (2)

where the quantities in equation are:
• Σa1, Σa2 macroscopic cross sections for neutron
absorption in energetic groups 1 and 2,

• νΣf1, νΣf2 macroscopic cross sections for fission
in both groups multiplied by average number of
neutron from fission,

• D1, D2 diffusion coefficient,
• Σg1g2, Σg2g1 scattering cross section from first en-
ergy group to second and conversely,

• ~Φ is vector of scalar neutron flux in both groups,

Multiplied equation 2 by vector ~v, the diffusion equa-
tion can be rewritten to form:

~v · ∇2~Φ = ~v ·M~Φ = MT (~v~Φ) (3)

If is vector ~v chosen as an eigenvector of matrix MT ,
eigen to eigenvalue λg, for its component applies:

vg = (M21,M11 − λg) (4)

Equation 3 can be rewritten as two simple wave equa-
tions:

∇2ξg − λgξg = 0, (5)

where g takes value 1 and 2. Using vector form, the
system can be written as:

~ξ = R~Φ, (6)
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where matrix R is:

R =
(

Σa1−νΣf1/kef
D1

−νΣf2/kef+Σg2g1
D1

−Σg1g2
D2

Σa2
D2

)
. (7)

The goal of this method is to obtain quantity ξg, from
which neutron flux can be obtained by using inverse
matrix R in both energy groups. General solution of
wave equation 5 is:

ξg(~r, φ) =
∫
Ag(α)cn

(√
|λg|~r cos(φ− α)

)
dα

+
∫
Bg(α)sn

(√
|λg|~r cos(φ− α)

)
dα,

(8)

where Ag(α) and Bg(α) are constants dependent on
interface of fuel assembly and function sn and cn are
defined according to value of eigenvalue λg, see table 1.

General function Real function Condition

sn(x) sin(x) λg < 0
sinh(x) λg > 0

cn(x) cos(x) λg < 0
cosh(x) λg > 0

Table 1. Function sn and cn for smooth neutron flux
profile reconstruction

Given that, the interfaces of the fuel assembly are on
discrete coordinates and discrete angles. The equation
8 can be rewritten as:

ξg(~r, φ) =
2∑
i=0

Ag,icn

(√
|λg|~r cos(φ− iπ3 )

)

+
2∑
i=0

Bg,isn

(√
|λg|~r cos(φ− iπ3 )

)
,

(9)

where constants Ag,i and Bg,i are determined by
known mean value of neutron flux on each interface of
fuel assembly. By express of mean value of quantity
ξg from equation 9, it could be obtained for each fuel
assembly interface set of equation for k = 1, 2, ..., 6 as:

ξg(k) =
2∑
i=0

Ag,iai,k +
2∑
i=0

Bg,ibi,k, (10)

where ai,k and bi,k are average values of chosen func-
tion over fuel assembly interface. The equation system
can be solved due to known values ξg(k) on fuel assem-
bly interface, from which can be obtained constants
Ag,i and Bg,i. Based on known constants, course of
quantity ξg(~r, φ) can be determined in all fuel assem-
blies. Thanks to the knowledge ξg(~r, φ), equation 6
can be solved. It is possible to calculate neutron flux
in elementary volume of coordinates ~r and φ from the
solution of equation 6. [5]
For more accurate reconstruction of neutron flux,

there are included values of neutron flux in assembly

corners. Equation system 9 is replaced by:

ξg(~r, φ) =
5∑
i=0

Ag,icn

(√
|λg|~r cos(φ− iπ6 )

)

+
5∑
i=0

Bg,isn

(√
|λg|~r cos(φ− iπ6 )

)
.

(11)

2.3. Reconstructed neutron flux
application to macroscopic cross
section values

The rehomogenization is data preparation process
based on more accurate distribution of neutron flux in
fuel assembly. The data preparation process is based
on the Flux-Weighted Volume method (FWV):

Σg =
∑
h∈g

∑
i ViΣi,hΦi,h∑

h∈g
∑
i ViΦi,h

, (12)

where i indicates spatial discrete cells with different
materials, Vi are volumes of these cells and Σi,h are
macroscopic cross sections of cell i and energy h, which
is from interval g = (Eg−1, Eg) and Φi,h is neutron
flux in cell i and energy h.
It has been proven that the identically assembly

data as the data homogenized from macroscopic cross
sections for each cell can be prepared by FWV.

Using the reconstructed neutron flux and cell macro-
scopic cross sections from infinite lattice, the new data
for fuel assemblies were obtained thank to equation
12.

3. Method testing
The method testing was performed based on data
comparison with reference model case calculated with
accurate deterministic code Helios. These cases could
be divided as:
• fuel cases,
• cases with strong absorber,
• cases with regulation rods,
• cases with reflector assembly.

Test tasks are divided to two independent categories.
The method was firstly tested using comparison with
accurate data for neutron flux distribution calcula-
tion in fuel assembly - Test of the method. These
data were found by simulating reference case in the
microcode Helios. In the second step, the neutron
flux distribution was found using data provided by
diffusion approach - Practice test.

The flowchart of the data flow is in figure 3. The or-
ange arrows show the data flow during the Test of the
method. The green arrows show the data flow during
the Practice test. The data from flux interpolation
test had high deviation and due to it, they were not
used for the rehomogenization process.

If the rehomogenized data are in better agreement
with reference data and their change compared to the
solution of infinite lattice in absolute value is more
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Figure 2. Illustration of larger case with caption of each fuel assembly.

Figure 3. The flowchart of the both testing method.
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Figure 4. Deviations of smooth profile neutron flux
reconstructions for A1 from accurate solution with
using Andrea reconstruction process in case A with
data from Helios.

than 10%, than the data are with green colour. If
the rehomogenized data are in wore agreement with
reference data and their change compared to the solu-
tion of infinite lattice in absolute value is more than
10%, than the data are with red colour. The results
with lower absolute change than 10% are with black
colour.

3.1. Test of method
This part of testing is focused on analysis of all the
benefits of the rehomogenization method in case of
accurate input parameters for calculation of smooth
neutron flux profile inside fuel assembly.
The monitored parameters were the neutron flux

distribution and the macroscopic cross section. More-
over the eigenvalue was calculated from macroscopic
cross section using two groups diffusion equation in
infinite lattice.

3.1.1. Case A
The case A consists of fuel assembly A1-a13A, A2-
a40A6 [6]. Fuel assembly a13A is situated in the
middle of the case, around its are 6 fuel assemblies
a40A6. The whole structure is simulated inside infinite
lattice. It is quite realistic model of fuel assemblies
distribution in a reactor core. Results of deviation
of smooth profile neutron flux reconstruction with
accurate Helios data for each fuel assembly and energy
group are in figures 4 and 5.
Figures 4 and 5 show good compliance of smooth

profile neutron flux, obtained by reconstruction pro-
cess, with reference calculation via Helios. The macro-
scopic cross sections prepared using reference calcula-
tion in case together with deviation of infinite lattice
calculation, respectively rehomogenized solution from
values prepared in case are in the table 2. Deviations
were calculated using equation:

∆ref,x = Σref − Σx

Σref
· 100, (13)

where quantity x means reconstructed macroscopic

Figure 5. Deviations of smooth profile neutron flux
reconstructions for A2 from accurate solution with
using Andrea reconstruction process in case A with
data from Helios.

Type Σref(cm−1) ∆ref,∞(%) ∆ref,rec(%)
Fuel assembly A1 - a13A

Σa,g1 8.07E-03 -0.748 -0.580
Σa,g2 5.64E-02 -0.759 -1.113
Dg1 1.32E+00 -2.445 -2.454
Dg2 4.09E-01 4.562 4.410
νΣf,g1 3.95E-03 -1.684 -1.482
νΣf,g2 6.13E-02 -0.640 -1.287
κΣf,g1 4.99E-14 -1.607 -1.405
κΣf,g2 8.15E-13 -0.640 -1.286
Σg1g2 1.86E-02 -2.448 -2.570
Σg2g1 1.01E-03 9.454 9.505

Fuel assembly A2-a40A6
Σa,g1 9.74E-03 0.097 -0.117
Σa,g2 1.07E-01 0.106 -0.088
Dg1 1.34E+00 0.285 0.301
Dg2 3.99E-01 -1.117 -1.127
νΣf,g1 7.43E-03 0.128 -0.103
νΣf,g2 1.60E-01 0.132 -0.125
κΣf,g1 9.59E-14 0.125 -0.107
κΣf,g2 2.12E-12 0.132 -0.125
Σg1g2 1.64E-02 0.231 0.320
Σg2g1 1.64E-03 -1.144 -1.136

Table 2. Macroscopic cross sections prepared us-
ing simulation in reference case (ref) for case A and
deviations solution in infinite lattice, respectively re-
homogenized cross sections.

cross sections or cross sections prepared in infinite
lattice calculation.

Besides macroscopic cross sections, eigenvalues cal-
culated from two group diffusion equation and re-
homogenized data were analysed. The values are
provided in table 3. Eigenvalue provides additional
integral quantity, decisive about suitability of reho-
mogenization method of macroscopic cross sections.
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FA k∞ref ∆k∞ref,∞ ∆k∞ref,rec
A1 0.903885 -282 pcm -533 pcm
A2 1.218033 59 pcm 47 pcm

Table 3. Eigenvalues calculated from macroscopic
cross section of case A using two group diffusion equa-
tion.

Figure 6. Deviations of smooth profile neutron flux
reconstructions for A2 from accurate solution with
using Andrea reconstruction process in case F with
data from Helios.

3.1.2. Case F
Case F is larger case, in which was central fuel assem-
bly replaced by model of HRK regulation assembly.
Model with HRK was chosen as a real problem with
higher neutron absorption than in model with regu-
lation cluster. Regulation by HRK assembly is used
for instance in reactor WWER-440, where is fuel as-
sembly replaced by absorbing part. Interlacing of
reconstructed neutron flux for fuel assembly adjoining
to HRK assembly (A2) is in figure 6. The neutron
flux deviation are on the level of -5 to 3% in case of
interface next to the HRK assembly. The neutron
flux was reconstructed for other fuel assemblies with
deviations around 1% in comparison with accurate
solution from Helios.

3.1.3. Case G
Within the complete description of possible use of
rehomogenization method, there was also simulated
situation with reflector assembly. Central assembly
was replaced by part of WWER-1000 reflector assem-
bly, the rest three fuel assemblies were a40A6. The
figure 7 shows comparison of reconstructed neutron
flux with accurate solution obtained by simulation in
Helios for fuel assembly next to the reflector assem-
bly. Maximal deviations in the reconstruction are in
the thermal group near the reflector interface. The
deviations were up to 7%.

3.2. Practice test
In the second step there were used boundary condi-
tions calculated via Andrea macrocode for neutron
flux distribution calculation. Under this subsection

Type Σref(cm−1) ∆ref,∞(%) ∆ref,rec(%)
Σa,g1 9.74E-03 0.119 -0.088
Σa,g2 1.07E-01 -0.257 -0.572
Dg1 1.34E+00 0.418 0.433
Dg2 4.05E-01 0.372 0.339
νΣf,g1 7.43E-03 0.116 -0.112
νΣf,g2 1.59E-01 -0.089 -0.376
κΣf,g1 9.59E-14 0.119 -0.110
κΣf,g2 2.12E-12 -0.089 -0.376
Σs,g1 1.64E-02 -0.146 -0.059
Σs,g2 1.67E-03 0.400 0.351

Table 4. Macroscopic cross sections prepared us-
ing simulation in reference case (ref) for case F and
deviations solution in infinite lattice, respectively re-
homogenized cross sections.

k∞ref ∆k∞ref,∞ ∆k∞ref,rec
1.218522 108 pcm 177 pcm

Table 5. Eigenvalues calculated from macroscopic
cross section of case F using two group diffusion equa-
tion.

Figure 7. Deviations of smooth profile neutron flux
reconstructions for A2 from accurate solution with
using Andrea reconstruction process in case G with
data from Helios.

Type Σref(cm−1) ∆ref,∞(%) ∆ref,rec(%)
Σa,g1 9.78E-03 0.540 0.335
Σa,g2 1.07E-01 -0.005 -0.325
Dg1 1.34E+00 0.256 0.271
Dg2 4.03E-01 -0.210 -0.245
νΣf,g1 7.44E-03 0.196 -0.032
νΣf,g2 1.59E-01 -0.038 -0.328
κΣf,g1 9.60E-14 0.238 0.010
κΣf,g2 2.12E-12 -0.038 -0.328
Σs,g1 1.65E-02 0.702 0.787
Σs,g2 1.67E-03 0.939 0.887

Table 6. Macroscopic cross sections prepared us-
ing simulation in reference case (ref) for case G and
deviations solution in infinite lattice, respectively re-
homogenized cross sections.
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k∞ref ∆k∞ref,∞ ∆k∞ref,rec
1.216401 -104 pcm -33 pcm

Table 7. Eigenvalues calculated from macroscopic
cross section of case G using two group diffusion equa-
tion.

Type Σref(cm−1) ∆ref,∞(%) ∆ref, rec(%)
Σa,g1 9.74E-03 2.500 2.507
Σa,g2 1.07E-01 10.100 10.171
Σf,g1 2.93E-03 0.127 0.127
Σf,g2 6.56E-02 0.131 0.134

Σs,g1g1 5.23E-01 -0.018 -0.018
Σs,g1g2 1.64E-02 0.232 0.232
Σs,g2g1 1.64E-03 -1.140 -1.143
Σs,g2g2 1.25E+00 0.111 0.112
Dg1 1.34E+00 0.285 0.285
Dg2 3.99E-01 -1.120 -1.117

Table 8. Σ homogenized in reference case (ref) and
deviation infinite and reconstructed cross sections for
case A with boundary conditions from Andrea.

the neutron fluxes on the interfaces of fuel assem-
blies, macroscopic cross sections and in conclusion
eigenvalues are compared at first.

The eigenvalues in this approach were calculated via
macrocode Andrea. The neutron leakage from the sys-
tem was calculated using the Helios microcode (using
diffusion coefficient and buckling factor). This neutron
leakage from the system was installed to macrocode
Andrea. The eigenvalue could be reached as keff = 1
with data from case model. The deviation of eigen-
value from 1 is given by deviations in macroscopic
cross sections from reference solution. The deviation
of eigenvalue from criticality is in this case integral
parameter of rehomogenization.

Case A
The macroscopic cross sections for fuel assembly A2
in case A are compared in the table 8.
The deviation of eigenvalue from criticality in-

creased from 20 pcm to 30 pcm in this configuration
with using rehomogenized cross section.

Case F
The compared macroscopic cross sections for fuel as-
sembly A2 in case F are in the table 9.
The deviation of eigenvalue from criticality de-

creased from 314 pcm to 123 pcm in this configuration
with using rehomogenized cross section.

Case G
The macroscopic cross sections for fuel assembly A2
in case G are compared in the table 10.
The deviation of eigenvalue from criticality de-

creased from 99 pcm to 46 pcm in this configuration
with using rehomogenized cross section.

Type Σref(cm−1) ∆ref,∞(%) ∆ref, rec(%)
Σa,g1 9.74E-03 2.497 2.507
Σa,g2 1.07E-01 10.104 10.171
Σf,g1 2.93E-03 0.127 0.127
Σf,g2 6.56E-02 0.131 0.134

Σs,g1g1 5.23E-01 -0.018 -0.018
Σs,g1g2 1.64E-02 0.232 0.232
Σs,g2g1 1.64E-03 -1.143 -1.143
Σs,g2g2 1.25E+00 0.111 0.112
Dg1 1.34E+00 0.285 0.285
Dg2 3.99E-01 -1.116 -1.117

Table 9. Σ homogenized in reference case (ref) and
deviation infinite and reconstructed cross sections for
case F with boundary conditions from Andrea.

Type Σref(cm−1) ∆ref,∞(%) ∆ref, rec(%)
Σa,g1 9.77E-03 2.783 2.794
Σa,g2 1.07E-01 9.725 9.789
Σf,g1 2.93E-03 0.141 0.141
Σf,g2 6.54E-02 -0.126 -0.123

Σs,g1g1 5.23E-01 0.091 0.091
Σs,g1g2 1.65E-02 0.475 0.475
Σs,g2g1 1.67E-03 0.678 0.678
Σs,g2g2 1.25E+00 -0.343 -0.342
Dg1 1.34E+00 0.371 0.371
Dg2 4.03E-01 -0.081 -0.081

Table 10. Σ homogenized in reference case (ref) and
deviation infinite and reconstructed cross sections for
case G with boundary conditions from Andrea.

3.3. Results evaluation
The benefits from rehomogenization process with the
reference neutron flux are not too noticeable and
macroscopic cross sections change a little. This fact
was found during the analysis based on the accurate
data from the transport code Helios. Total influence
of rehomogenization process showed up beneficial in
case A case G.

The macroscopic cross section for all fuel assemblies
were apparently much more dependent on the neutron
spectra during the data preparation process, than on
the distribution of neutron flux. Unfortunately the
spectral homogenization process could not be solved
without knowledge of loading pattern.

Deviations of neutron flux on the interfaces of fuel
assembly between accurate solution from transport
code and diffusion approach are up to 15%. The
macroscopic cross sections report the same behaviour
as in the case of the accurate boundary values despite
such deviations in boundary conditions for reconstruc-
tion.

Oppositely to the Test of Method task, there were
registered benefits in case of fuel assembly next to
the HRK assembly and next to the reflector assembly,
but no benefits in case consisted from two fuel assem-
blies. The neutron flux tilt is apparently too low to
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bring better results because too high deviations in the
boundary neutron fluxes and due to there is no way
to prepare better macroscopic data for these problem.

4. Conclusion
The main goal of study is to analyse the benefits,
which the method can bring to the full core calcula-
tion. New sets of macroscopic data were calculated
via FWV with reconstructed neutron flux and macro-
scopic cross sections (calculated in infinite lattice) for
each cell. The whole method was tested with input
data for reconstruction process obtained by simulation
in Helios. The general trend of the rehomogenized
data was not found and due to there is no way to find
total influence on the calculation. Results of eigen-
value show that rehomogenization can bring better
results in case A and case G.

In the second step, the method was tested with neu-
tron flux boundary condition calculated by diffusion
code Andrea. Benefits of this approach were minimal,
because the cross sections were still the same, but total
benefit was positive. Eigenvalues with rehomogenized
macroscopic cross section were relatively identical to
eigenvalue from reference case.
During this study was found that neutron flux in-

side fuel assemblies can not be approximated by easy
polynomial functions, but there is need to use recon-
struction method based on a solving diffusion equation.
Despite the correctly reconstructed neutron flux shape,
the macroscopic cross sections do not change signifi-
cantly and this change was not essential to calculation
via Andrea. This situation led to the question if is
possible to separate spatial and spectral homogeniza-
tion process. Probably this effect can be analysed
by performing rehomogenization process using more
neutron groups.

List of symbols
Φ(x, y) Neutron flux in the cell with coordinates x and y

[cm−2s−1]
Φ Mean value of neutron flux in fuel assembly [cm−2s−1]
~Φ Vector of grouped scalar neutron fluxes [cm−2s−1]

Σig Macroscopic cross section of reaction i and energy
group g [cm−1]

ν Neutron fission yield [–]
κ Energy released during fission process [–]
keff Effective eigenvalue [–]
Dg Diffusion coefficient of group g [cm]
Vi Volume of cell i [cm3]
k∞ Eigenvalue calculated using two group diffusion equa-

tion [–]
∆k∞min,x Deviation of eigenvalue of calculation x calcu-

lated with two group diffusion equation from reference
calculation [pcm]

a Index for absorption [–]
f Index for fission [–]
g1g2 Index for scatter from group 1 to group 2 [–]
g2g1 Index for scatter from group 2 to group 1 [–]
min Index for reference calculation in case [–]
∞ Index for calculation in infinite lattice [–]
rec Index for calculation from rehomogenized data [–]
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