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Abstract. The aim of this paper is to evaluate the performance of existing parallel linear equation
solvers to solving large-scale, nonlinear finite element analysis problems on systems with distributed
memory. The parallel approach allows us to take an advantage of the distributed memory enabling
forming large system matrices and of multiple processing units to achieve significant speedups. Our
study is based on comparison of parallel direct solver and parallel iterative solver implemented in
SuperLU DIST library from Portable, Extensible Toolkit for Scientific Computation (PETSc). Both
considered solvers are designed for distributed system memory model and are based on a Massage
Passing Interface (MPI).

The efficiency of individual solvers is evaluated on a selected benchmark problems, with different
solution strategies by comparing computation times and obtained speedups.
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1. Introduction
Computational advancements have started a new
trend in computational science and engineering that
were powered by development and increases in the
power and pervasiveness of computer and communica-
tion. Capitalization on those advances by developing
techniques for modern hardware enable the solution
of large and complex problems. Traditional finite el-
ement solvers run in serial mode and are limited by
available resources represented by a single machine.
The serial computers permit us to run simulation
codes only sequentially and often have limited avail-
able resources represented by the single processing
unit and available system memory. Parallelization
can significantly reduce the solution time by more effi-
cient use of modern hardware and enable to solve large
problems by utilizing distributed memory resources.

Parallel computers can be classified by type of sys-
tem memory architecture. The shared, distributed
and hybrid (combination of shared and distributed
memory) memory systems exist [1]. This paper is fo-
cused on distributed memory systems. In distributed
memory systems, the memory is physically distributed
on individual processing units and there is no global
shared memory as on shared memory systems, where
all computing units can access the same physical global
address space. The explicit communications between
processing units are needed to establish data exchange.
It is a task of the programmer to explicitly define how
and when data is communicated. The cost of commu-
nication, compared to a shared memory systems, can
be very high, on the other hand, the advantage is that
overall memory is scalable with increasing number

of processors an memory access is not limited by a
single memory bus. In recent years a new trend is
based on using graphics processing units together with
traditional processors to accelerate the solution pro-
cess is enabling. Graphics processing unit computes
intensive portions of the solution while the remainder
of the code still runs on the processor.

The idea of parallel algorithms is based on partition-
ing the problem into a set of smaller tasks, that can
be solved simultaneously. Scalability of computation
is the most important goal in parallel computing [2].
The scalable parallel algorithm allows achieving de-
creasing execution time by using an increasing number
of processing units, ideally in a linear trend. The ideal
scalability is difficult to obtain due to the overhead
cost of the parallel algorithm (synchronization and
communication) and due to the fact that some parts
of the problem are essentially sequential. Moreover,
despite obtained speed-up, the parallel computing al-
lows solving large, complex problems that cannot be
solved at a single, well-equipped machine.
The Finite Element Method (FEM) has become a

widely used tool for solving problems described by
partial differential equations and it has been widely
adopted by engineering and scientific communities
as a reliable numerical tool. In FEM the differen-
tial equations are converted to the algebraic system
of equations by using variational methods with the
help of decomposition of the problem domain into
sub-domains called elements and smart choice of in-
terpolation functions.

Numerical solutions of many engineering problems
lead to the solution of nonlinear models consisting of
very complex geometries and many degrees of free-
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dom. Nonlinear problems add additional complexity.
In structural mechanics the nonlinearity can originate
from nonlinear geometrical relations (large deforma-
tions), nonlinearity of constitutive relations on from
boundary conditions (follower type of loading, for
example) problem, typically using Newton-Raphson
algorithm. This makes the nonlinear problem solution
more demanding, compared to linear problems. The
schema of common process for iteration processes is
presented on next figure Fig. 1.
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end 
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Figure 1. Iteration process.

Nonlinear structural analysis is the prediction of the
response of nonlinear structures by modelbased sim-
ulation. The concept of equilibrium path explaining
the solution process of nonlinear structural analysis.
This concept lends itself to graphical representation in
the form of response diagrams. The form that is used
in this paper is load-deflection response diagram. The
mechanical behavior of structures can be character-
ized by load-deflection or force-displacement response.
This response is represented in two dimensions as
representative force quantity marked by f against a
representative displacement quantity represented by
d as illustrated in Fig. 2.
Term path is a continuous curve in load deflection

diagram and in typically the path is smooth. Smooth
path has a continuous tangent except at exceptional
points. The state or configuration of the structure
represents each point in the path. The equilibrium
path represents configurations in static equilibrium.
The inception of the response diagram (load is equal
to zero, displacement is equal to zero) is characterized
reference state and this state represents configuration

from which loads and displacements are measured.
For structural analysis there are four sources of non-
linear behavior. The corresponding nonlinear effects
are identified by the term material, geometric, force
boundary conditions and displacement boundary con-
ditions.

In this paper, material nonlinearity we consider that
only being the source of nonlinear behavior. Material
behavior depends on current deformation state and
possibly past history of deformation. Other constitu-
tive variables, prestress, temperature, time, etc. may
be involved [3]. The problem representing discrete
equilibrium equations at nodes is described by system
of nonlinear algebraic equations

fint(d) = fext, (1)

where the fint represents the internal forces vector
depending on unknown displacements d and fext rep-
resenting external load. The problem can be linearized
by means of Taylor series expansion of fint(d). The
internal force vector find represent nodal equivalent
of internal stresses and defined as

fσint(d) = BTσ(ε(d))dV, (2)

where B is strain-displacement matrix, σ is stress and
ε is displacement. The Taylor Series expansion of
fint(d) around the point (d) is given by

fint(d) + ∂fint(d)
∂d ∆d = fext, (3)

where ∂fint(d)
∂d represents the tangential stiffness

matrix K of the structure. After substitution the
equation 2 has a form

K∆d = fext − fint(d), (4)

Newton‘s method is a commonly used to iteratively
solve nonlinear systems. In the general form, load
movement is applied and the incremental displace-
ment is solved from linearized, discrete problem. The
residual loading is evaluated from the difference of
external and internal forces corresponding to achieved
displacement, structure is loaded by residual and corre-
sponding incremental change of displacement is evalu-
ated. This iterative process is repeated, until required
tolerance is achieved. In this contribution, we consider
different in variants of the Newton-Raphson method,
the modified Newton-Raphson method and the ini-
tial stiffness method [4]. The full Newton-Raphson
method is based on using the tangent stiffness matrix
in each iteration which is formed and factorized in
each iteration. The advantage of the method is fast
convergence, but it can be computationally expensive
for some types of problems.
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Figure 2. Newton - Raphson method.

The modified Newton-Raphson method has the
same algorithm, but stiffness matrix is loaded only
after certain number of iterations or out the forming
of each loading step. This approach can be compu-
tationally expensive as the stiffness matrix should be
factorized only when changed however, the solution
process has slower convergence rate compared to the
full Newton-Raphson method.
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Figure 3. Modified Newton - Raphson method.

The initial stiffness method is using initial, elastic
stiffness matrix constructed only once and which is
held constant throughout the solution process. This
method is robust but requires a large number of it-
erations to converge. The optimal choice is problem
dependent. The iterative solver has basically the same
solution cost of each problem, while direct solver can
profit from existing factorization of system matrix in
case there is no change (also iterative solver can profit,
as no preconditioner setup is needed), but the effect is
not in common with profit from existing factorization
of system matrix,
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Figure 4. Initial stiffness method.

2. Implementation
SuperLU is a general purpose library for the direct
solution of a large sparse symmetric or non-symmetric
system of linear equations [5]. SuperLU library pro-
vides serial, multithreaded (shared-memory), and dis-
tributed memory versions. The performance of the
distributed version of SuperLU solver based on Mes-
sage Passing Interface (MPI) [6] is evaluated nonlinear
structural analysis and compared with implemented
Portable, Extensible Toolkit for Scientific Computa-
tion (PETSc) as the iterative solver [7] in this paper.

The comparison was made using the OOFEM open-
source finite element solver [8], distributed under GNU
public license, written in C++ programming language.
This solver has been extended to support the SuperLU
distributed version. The interface to SuperLU DIST
library consists of new classes to represent interface
to SuperLU DIST (direct solver based on distributed
memory model) and classes implementing SuperLU
DIST compatible sparse matrix storage. The PETSc
(iterative solver based on distributed memory) support
already exists. The SuperLU driver advantageously
uses the symmetry of the matrix in the nonlinear
system. The sparse matrix and the right-hand side
vector are distributed among all the processes using
the distribution based on block rows. That is, each
process owns a block of consecutive rows of matrices.
Distributed sparse matrix is stored in a compressed
row format. This choice comes from SuperLU library,
which requires the sparse matrix in this format on
input. In the compressed row format, only nonzero
entries of the sparse matrix are stored in one dimen-
sional array. Additional integer array is needed to
store column indices of the stored values. We assume,
that the portioning of the discretized problem domain
has been established and individual, non-overlapping
sub-domains (partitions) are assigned to and stored
locally on individual computing nodes. The so called
node-cut strategy is assumed, where the cut dividing
the problem domain runs through the nodes. Nodes on
mutual partition boundaries are called shared nodes,
the nodes inside individual partitions are so-called
local nodes.
The process of parallel assembly is using group
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of processing nodes assembling the problem simul-
taneously. Each processing node is responsible for
assembling its contribution to the global system ma-
trix by summing up the contributions from individual
elements assembled to the node by portioning. To
minimize the communication, it is natural that each
processing node will assemble and maintain in its lo-
cal memory corresponding block of global stiffness
matrix. The ownership is uniquely defined for local
nodes, which are exclusively shared by local elements
on individual partitions. For shared nodes, which
are shared by elements from multiple partitions, the
ownership has to be defined by convention. The pro-
cess of assembling the global right hand side vector is
very similar to the process of assembling the stiffness
matrix, but in many aspects is simpler, do to the
assembly of local vector contributions.

3. Results
The mentioned nonlinear solution strategies have been
evaluated on 3D finite element model of anchor pull
out test using two different sparse linear solvers (Su-
perLU DIST and PETSc) using distributed memory
programming model. The anchor is located close to
the boundary, requiring 3D analysis with only one
plane of symmetry. As the stell anchor is pulled out
of concrete, the crack surface is initiated at the anchor
head and starts to propagate toward the boundary as
the loading increases. To model concrete fracture, an
anisotropic, nonlocal damage based model has been
used. The anchor pullout test mesh consists of 444
nodes and 799 triangular elements with nonlinear in-
terpolation. The loading was controlled by prescribed
increments of anchor pull out. In total 15 loading
steps have been analyzed, corresponding to almost
fully pulled anchor. The individual approaches were
tested on Linux workstation (running Ubuntu 14.04
OS) with the two CPU Intel(R) Xeon(R) CPU E5-
2630 v3 @ 2.40GHz and 126GB RAM. Each of the
two CPU units consists of eight physical and sixteen
logical cores, allowing up to thirty-two threads to run
simultaneously on one workstation. All the tests fit
into a system memory.

Figure 5. Anchor pullout test.

The evaluated nonlinear solution strategies include
Newton-Raphson method with stiffness matrix up-
date after every iteration, Modified Newton-Raphson
method with stiffness matrix updated after every two
and ten iterations, and initial stiffness method.

The total number of iterations in our testing bench-
mark problem for all considered strategies (Newton-
Raphson method, modified Newton-Raphson method
with all cases, initial stiffness method) is presented
in Tab.1. It is clear that the number of iteration
which is needed to successfully solve our benchmark
problem is higher for Initial stiffness matrix method
than the Newton-Raphson method. The number of
iterations in one loading step is in the range from
2 (Newton-Raphson method) to 30 (Initial stiffness
method) iterations to successfully solve this loading
step as a part of the solution process.

Solution method Num. of iteration Matrix update

N-R 204 241
mod. N-R s. 2 251 131
mod. N-R s. 10 297 37
initial stiffness 6049 1

Table 1. Number of iterations for different methods.

To illustrate the performance of direct SuperLU
DIST solver and iterative solver PETSc the execution
times and speedups are presented. In case of iterative
conjugated gradient solver from PETSc, the conver-
gence criteria based on relative solution error equal
to 10−6 has been used. The performance has been
evaluated for case without any preconditioning, as
well as for the case when block Jacobi preconditioning
has been used. The obtained solution times (aver-
aged over five consecutive runs) and corresponding
speedups (relative to 2 CPU) are presented in Fig. 6,
Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig 11.

The achieved results show that the effect of the
parallelization using both solvers is quite substantial.
In case of full Newton-Raphson method where the
stiffness is updated after every iteration, the perfor-
mance of direct solver is lower than performance of
iterative solvers. This is because of dense charac-
ter of stiffness matrix, from which iterative solver can
profit. Also direct solver could not profit from existing
factorization, as the system matrix is updated after
every iteration. The performance of preconditioned
iterative solver is better compared to performance of
non-preconditioned solver, see Fig. 6 for reference.
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Figure 6. Execution times using the Newton-
Raphson method with secant stiffness updated after
every iteration.

The similar trend can be observed in case of Modi-
fied Newton-Raphson method. Again the performance
of iterative solver is superior to performance of direct
solver, see Fig. 7, comparing solution times for both
solver and stiffness update every 2 or 10 iterations.
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Figure 7. Execution times using the Modified
Newton-Raphson method with secant stiffness updated
after every 2nd and 10th iteration.

Finally, the achieved results of using Initial Stiffness
Matrix method with using direct solver and iterative
solver are presented. In this case the best performance
has been obtained using direct solver, which is in this
case extremely profits from existing factorization.
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Figure 8. Execution times using the Initial Stiffness
Matrix method.

It is difficult to generalize obtained results, as the
relative performance of direct and iterative solvers
is highly depend on particular problem. However it
is possible to evaluate the scalability of both solvers.
The results for different settings are presented in Figs.
9, 10 and 11. Although far from ideal scalability, the
results show reasonable linear scalability up to 16 cores.
The significant decrease of performance for 32 threads,
observed in all cases, can be attributed to hyper-
threading technology of Intel processors, assembling to
sharing some CPU resources between hyper-threaded
cores, which takes place only for 32 threads (note that
workstation had 16 physical hyper-threaded cores)
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Figure 9. Speedups using the Newton-Raphson
method with secant stiffness updated every iteration.
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Figure 10. Speedups using the Modified Newton-
Raphson method with secant stiffness updated after
every 2nd and 10th iteration.
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Figure 11. Speedups with using the Initial Stiffness
Matrix method.

4. Conclusions
The paper evaluates the performance of a direct Su-
perLU and PETSc iterative solvers based on dis-
tributed system memory model in object-oriented,
FEM framework. The parallelization strategy is based
on message passing programming model. The perfor-
mance of direct and iterative solvers are compared on
complex nonlinear benchmark problem of 3D simu-
lation of an anchor pullout test. For the particular
benchmark case considered, the performance of it-
erative solvers has been superior, except the case of
Initial Stiffness method, where direct solver had better
performance. Despite particular problem considered,
more general can depend or can be made regarding
the scalability of both solvers. However, we can make
general conclusion regarding scalability of both solvers.
Both solvers show relatively good scalability. As the
relative performance of individual solvers anyway for
different use case and problems, it is definitely an
advantage of having both solver types implemented
in any Finite Element code.
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