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Abstract. The contribution deals with calculation of isentropic efficiency and also with calculation
of isentropic process of real gas or gaseous mixtures. The method is based on numerical solution
of basic definitional equation of isentropic process and equation of isentropic efficiency with direct
implementation of real gas equation of state (EOS).
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1. Introduction
Isentropic efficiency is an important parameter widely
used in thermodynamic design of centrifugal compres-
sor. Reversible adiabatic process identical to isen-
tropic process is used as reference process. The isen-
tropic process is a process to which great attention is
devoted in literature. In some articles certain inaccu-
racies are used repeatedly. For example dependence of
heat capacities on temperature is ignored. Very often
Poisson equations are used for calculation of real gases.
Isentropic exponents that are generally dependent on
temperature and pressure are often substituted by
mean values. Adiabatic and isentropic processes are
considered synonymous. These inaccuracies can gen-
erate noticeable errors in calculations.

The aim of this contribution is to clarify the above
mentioned inaccuracies and to suggest thermodynami-
cally correct procedures that are appropriate for PC’s.
In the first part of contribution equation for some
simple special cases is described very shortly. The
second more extensive part deals with techniques for
various combinations of input and output variables.
All these techniques are based on behavior of real
gases and are independent on real gases EOS used.

2. Isentropic efficiency
Efficiency of compressor that does not exchange heat
with the environment (compressor without intercool-
ing or uncooled compressor section) is calculated by
comparing the work that was actually spent on com-
pression and the appropriate reference process. Refer-
ence process is usually, depending on the compression
process in the compressor, an isentropic process [1–
4], a polytropic process [2, 3, 5, 6], or a reversible
isothermal process [2, 3, 7]. We will only deal with a
reversible isentropic process and isentropic compres-
sion in the following text.

In the actual process that occurs in the compressor,
losses occur in the flowing gas and, as a result of it,
some part of the kinetic energy is converted into heat.
This process leads to an increase in temperature and

Figure 1. Isentropic (area ACDEFA) and actual work
(area GBCDEFG) in T-S diagram when compressed
from pressure p1 to pressure p2.

entropy of compressed gas. A small part of the gener-
ated heat is discharged from the compressor casing to
the surroundings. The process that is going on in the
actual compressor is irreversible. The final tempera-
ture of the gas after its compression is always higher
than temperature of gas after isentropic compression.
In the diagram H-S in FIGURE 1 the reversible isen-
tropic compression work is represented by the area
ACDEFA and the actual work spent on compression
from pressure p1 to the pressure p2 = p2a = p2s is rep-
resented by the area GBCDEFG. The work actually
spent is irreversible and can be divided into isentropic
work, compression losses (area ABGFA) and increase
of compression work due to losses (area ABCA)

∆Ha = H2a −H1. (1)

Isentropic efficiency is defined as a relation between
reversible isentropic work and actual work

ηs = ∆Hs

∆Ha
= H2s −H1

H2a −H1
. (2)

Short repetition of basic principles [2, 3, 8].

• Adiabatic (isentropic) efficiency does not depend
only on amount of losses. It depends on amount
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Figure 2. Isentropic and actual processes in H − S
diagram.

of additional increase in compression work due to
losses expressed by the area ACBA, too.

• There are losses in gas flow in the actual process
that occurs in compressor, and as a result, a part of
the kinetic energy is converted into thermal energy
and hence an increase in temperature and entropy
of compressed gas.

• At the same quality of compression mean value of
additional increasing in compression work increases
with increasing of total pressure.

• At the same quality of compression the adiabatic
efficiency will be at higher pressure ratio lower than
at lower pressure ratio.

• Temperature of gas after actual compression is al-
ways higher than temperature after isentropic com-
pression (see FIGURE 2).

3. Equation of isentrope
Adiabatic process is defined by the equation

dq = 0, (3)

where q is heat input into system

dS = dq

T
= 0. (4)

Reversible adiabat is identical to isentrope. In irre-
versible process is

dS >
dq

T
= 0. (5)

Adiabat and isentrope are not identical. We rewrite
equation (4) into form

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV =

= CV
T

dT +
(
∂p

∂T

)
V

dV = 0, (6)

where p is the pressure of system and CV is heat
capacity, which is derivative of internal energy with

respect to temperature at constant volume

CV =
(
∂U

∂T

)
V

. (7)

That generally depends on temperature and on
volume. For ideal gas the heat capacity CV = C0

V

depends only on temperature.
Equation of isentrope is obtained by integrating

the relationship (6). Its specific form depends on the
chosen equation of state from which we determine
(∂p/∂T )V and the chosen equation for the tempera-
ture dependence of C0

V .

4. Reversible process, ideal gas,
constant C0

V (perfect gas)
This simplest case leads to the known Poisson equa-
tions. Equation (6) we rewrite into form

C0
V

T
dT = −R

V
dV, (8)

where derivative (∂p/∂T )V is found from equation of
state written for one mole

pV = RT. (9)

After integration of Eq. (8) and after modification
we receive well known Poisson equation in variables
T − V

TV k−1 = const., (10)

where k = (C0
V +R)/C0

V . Poisson equations in vari-
ables T−p and p−V we obtain by inputting of volume
V or temperature T from equation of state (9)

Tp
1−k

k = const., (11)

pV k = const. (12)

5. Reversible process, general
equation of isentrope

From Eq. (4) we obtain general equation of isentrope

S(T, V ) = const. (13)

Then the problem is reduced to standard calculation
of entropy for known (chosen) equation of state and
equation of temperature dependence of C0

V (Figure 3).
In the following text we will use the molar density
ρ = 1/V instead of the volume as an independent
variable. We will write the equation of the isentrope
in the form

S(T2, ρ2)− S(T1, ρ1) = 0, (14)

where index 1 denotes inlet state and index 2 denotes
end state after isentropic compression (Figure 2).
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Figure 3. Dependence of C0
p on temperature for

several common used gases [9].

6. Methods of calculation of
isentropic process and
isentropic efficiency

Before we come to the description of the solution of
each type of calculation, it will be useful to mention
several methods of solving the isentropic process.

• In the simplest case, we can assume that we are
compressing the ideal gas. The calculation will be
very easy and very inaccurate.

• Entropy was often read from diagrams or tables in
the past. The accuracy was limited by the size of
the diagram. However, this method is completely
inappropriate for calculating gaseous mixtures and
cannot be used on PC.

• Another of the approximate methods of calculating
the isentropic process is the method based on the
relations valid for the ideal gas, i.e. on the Poisson
equations (10), (11) and (12). Isentropic exponent
is calculated using of real gas EOS and general
relationships.

kp,V = −V
p

Cp
CV

(
∂p

∂V

)
T

, (15)

kp,T = 1
1− p

Cp

(
∂V
∂T

)
p

, (16)

kT,V = 1 + V

CV

(
∂p

∂T

)
V

. (17)

Usually we do not know all parameters of end point
of isentropic change (Figure 2). Thus we have to
use value of isentropic exponent calculated for mean
pressure and temperature. We estimate parameters in
the point of interest from the behavior of the ideal gas.
This method is suitable for PC and is appropriate for

calculation of gas mixtures. Even in this case, we do
not have enough accurate results.
As an illustration of the inappropriate use of the

relationships derived for the ideal gas in combina-
tion with the isentropic exponent calculated by means
of the real gas equation of state from the relation-
ship (15), the calculation of the isentropic change from
the relation can serve calculation of isentropic enthalpy
from equation

∆Hs = p1V1
kp,V

kp,V − 1

(p2

p1

) kp,V −1
kp,V

− 1

 . (18)

There are a number of other methods described in
literature but further we focus only on methods which
use the solution of a system of nonlinear equations,
one of which is always a chosen real gas equation
of state and one the requirement for zero change of
entropy in transition from state 1 to 2 (Figure 2).

The following paragraphs provide algorithms of so-
lution for individual types of calculations. In their
design, particular emphasis was placed on working
reliably and quickly. For every combination of input
parameters the individual algorithm for solution of sys-
tem of nonlinear equations was designed. Important
parts of every algorithm are relations for estimation
of the initial approximations. In all cases, the calcu-
lation can be divided into a part independent of the
real gas EOS and the equation for the C0

p = C0
p(T ) of

the ideal gas and a part dependent on these equations.
The suitable method for solution of this system is
Newton’s method.
Functions Fi that are used in the next detailed

description of algorithms are shown in Table 3. To
construct the Jacobi matrix of functions Fi that we
need for solution by the Newton method, we need to
know the partial derivatives of Fi. These derivatives
are shown in Table 4. The abovementioned derivatives
can also be obtained by numerical derivation of func-
tions Fi. In Table 5 there are relations for calculation
of entropy and enthalpy of real gas and relations for
calculation of dimensionless quantities Q [10].
Any real gas EOS can be chosen for the following

calculations. Dimensionless quantities Q for chosen
EOS can be found in literature or can be derived from
relations described in Table 5.

7. Calculations based on the real
gas EOS

In practical calculations, we need to find unknown
parameters when we know the initial state and two
parameters of discharge state. The combination of
input and output parameters is shown in Table 1.
In case that isentropic efficiency has value one

i.e. ηs = 1 it is true p2s = p2a, T2s = T2a and
∆Hs = ∆Ha, then items 1, 2 and 3 from Table 1
show combination of input and output parameters of
isentropic change of thermodynamic state see Table 2.
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Input Output
1 p1, T1, p2s T2s, ∆Hs

2 p1, T1, T2s p2s, ∆Hs

3 p1, T1, ∆Hs p2s, T2s

Table 1. Combination of output and input parame-
ters for isentropic process.

Input Output
1 p1, T1, p2a, ηs T2a, ∆Ha

2 p1, T1, p2a, ∆Ha T2a, ηs
3 p1, T1, T2a, ηs p2a, ∆Ha

4 p1, T1, T2a, ∆Ha p2a, ηs
5 p1, T1, p2a, T2a ∆Ha, ηs

Table 2. Combination of output and input parameters.

7.1. Example of the solution by
Newton’s method

All combinations of parameters are mentioned in [4].
For one of them we will show the solution. We will
compute isentropic temperature T2 = T2s and isen-
tropic change in enthalpy ∆H = ∆Hs from known
parameters p1, T1 and p2 (Figure 2). It is variant 1
from Table 1. In this case we assume that the isen-
tropic efficiency is equal to one ηs = 1. Since this is
the isentropic process, the original system of four equa-
tions is now simplified to only two equations F1 = 0,
F2 = 0.

When we use general equation of isentropic process
S1 − S2 = 0 (Figure 2) and general expression of
real gas EOS we obtain the system of two nonlinear
equations for two variables T2 and ρ2

F1 = S1(T1, ρ1)− S2s(T2s, ρ2s) = 0, (19)

F2 = p2s

ρ2sRT2s
− z2s(T2s, ρ2s) = 0. (20)

This system of equations will be solved by Newton’s
method. Because it is known and very often used
method, we will show only an matrix notation of
linear equations for increments in ∆T and ∆ρ[ ∂F1

∂T2s

∂F1
∂ρ2s

∂F2
∂T2s

∂F2
∂ρ2s

]
·
[
∆T
∆ρ

]
=
[
−F1
−F2

]
(21)

Desired parameters T2 and ρ2 can be obtained from
relationships

T
(k+1)
2s = T

(k)
2s + ∆T, (22)

ρ
(k+1)
2s = ρ

(k)
2s + ∆ρ. (23)

The calculation is completed by fulfilling of the
requiremen max(|δT |; |δρ|) ≤ ε where δT and δρ are
relative deviations and ε is chosen value.

Detail description of solution for this example: For
inlet condition p1, T1 we determine values S1 and H1
from real gas EOS next we calculate C0

V

C0
p = C0

p(T1,
−→x ), C0

V = C0
p −R. (24)

Next step is solution of system of equations F1 = 0,
F2 = 0 by using of Newton’s method. Initial approxi-
mations are relations valid for ideal gas

T
(0)
2s = T1

(
p2s

p1

)C0
p−C0

V
C0

P
, (25)

ρ
(0)
2s = p2s

RT
(0)
2s

. (26)

As the results we obtain T2s and ρ2s. From gen-
eral form of EOS we obtain compressibility factor in
point 2s (Figure 2)

z2s = p2s

RT2sρ2s
(27)

and enthalpy

H2s = H2s(T2s, ρ2s,
−→x ). (28)

Finally we calculate change in enthalpy

∆H = H2 −H1, (29)

where H2 = H2s.

7.2. Calculation of T2s, ∆Ha from
known parameters p1, T1, p2a and ηs

(figure 2, table 2 - item 1)
We solve the system of equations F1 = 0, F2 = 0,
F4 = 0 and F5 = 0 for unknown parameters T2s, ρ2s,
T2a, ρ2a.

Initial approximations are

T
(0)
2s = T1

(
p2a

p1

)C0
p−C0

V
C0

P
, (30)

ρ
(0)
2s = p2a

RT
(0)
2s

, (31)

T
(0)
2a = T

(0)
2s − T1

ηs
+ T1, (32)

ρ
(0)
2a = p2a

RT
(0)
2a

, (33)

where C0
p is

C0
p = C0

p(T1,
−→x ), C0

V = C0
p −R. (34)

Change in enthalpy ∆Ha we obtain from equation

∆Ha = H2a −H1, (35)

where
H2a = f(T2a, ρ2a,

−→x ). (36)
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7.3. Calculation of T2a, ηs from known
parameters p1, T1, p2a and ∆Ha

(figure 2, table 2 - item 2)
We solve the system of four equations F1 = 0, F2 = 0,
F5 = 0, F6 = 0 for unknown parameters T2s, ρ2s, T2a,
ρ2a.

Initial approximation T (0)
2s we obtain from Eq. (30),

ρ
(0)
2s from Eq. (31)

T
(0)
2s = T1 + ∆Ha

C0
p

(37)

and ρ(0)
2a from Eq. (33).

Isentropic efficiency ηs we calculate from Eq. (2),
where enthalpy H1 we know from calculation in initial
point 1 and H2a = f(T2a, ρ2a,

−→x ).

7.4. Calculation of p2a, ∆Ha from known
parameters p1, T1, T2a and ηs

(figure 2, table 2 - item 3)
Calculation is based on solving of three equations
F1 = 0, F4 = 0 and F8 = 0 for unknown parameters
T2s, ρ2s and ρ2a.
The first approximations are

T
(0)
2s = ηs(T2a − T1) + T1, (38)

ρ
(0)
2s = ρ1

(
T2s

T1

) C0
V

C0
p−C0

V
, (39)

ρ
(0)
2a = T

(0)
2s ρ

(0)
2s

T2a
, (40)

where C0
p see Eq.(34).

After every step of the Newton’s method the k-th
approximation of the compressibility factor z(k)

2a is
found from real gas equation of state and then the
k-th approximation of the pressure p(k)

2a is calculated
from equation

p
(k)
2a = z

(k)
2a RT2aρ

(k)
2a . (41)

From equality p2s = p2a (see figure 2), we can
calculate

z
(k)
2s = z

(k)
2a T2aρ

(k)
2a

T
(k)
2s ρ

(k)
2s

. (42)

Change in enthalpy ∆Ha is determined from Eq. (1),
where H2a = f(T2a, ρ2a,

−→x ).

7.5. Calculation of p2a, ηs from known
parameters p1, T1, T2a and ∆Ha

(figure 2, table 2 - item 4)
To calculate unknown parameters T2s, ρ2s and ρ2a
system of three equations F1 = 0, F6 = 0 and F8 = 0
is solved.
For the first approximation of temperature we

choose T (0)
2s = T2a. Density ρ(0)

2s we obtain from equa-
tion (40), ρ(0)

2a = ρ
(0)
2s and z(0)

2a = z
(0)
2s = 1. After every

Figure 4. Ideal gas temperature T2s calculated from
Eq. (30) – blue curve and real gas temperature T2s –
red curve. Inlet conditions propane p1 = 550000Pa,
T1 = 293.15K.

Figure 5. Ideal gas isentropic work ∆Hs calculated
from Eq. (43) – blue curve and real gas isentropic
work ∆Hs – red curve. Inlet conditions propane p1 =
550000Pa, T1 = 293.15K.

step of Newton’s method compressibility factors z(k)
2a

and z
(k)
2s are calculated similar way like in previous

case i.e. by solution of real gas EOS and by using of
Equations (41) a (42).
Finally isentropic efficiency ηs we obtain from

Eq. (2), where H1 is known from calculation of
thermodynamic properties in point 1 (figure 2) and
H2s = f(T2s, ρ2s,

−→x ).

7.6. Calculation of ∆Ha, ηs from known
parameters p1, T1, p2a and T2a

(figure 2, table 2 - item 5)
To calculate unknown parameters T2s, ρ2s and ρ2a
system of three equations F1 = 0, F2 = 0 and F5 = 0
is solved.
First approximation of temperature T (0)

2s we ob-
tain from Eq. (30), ρ(0)

2s from Eq (31) and ρ(0)
2a from

Eq. (33).
Change in enthalpy ∆Ha we calculate by using

of Eq. (1), where H2a = f(T2a, ρ2a,
−→x ). Isentropic

efficiency ηs we finally obtain from Eq. (2), where
H2s = f(T2s, ρ2s,

−→x ).
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Figure 6. Relative deviation of isentropic work cal-
culated for real and ideal gas.

8. Example
As an example the calculation of temperature and
isentropic work after isentropic change was chosen. In
this example compression of propane from state 1 to
state 2s (see Figure 2) is calculate by two methods.
In the first case above described method based on
the real gas is used and in the second case method
based on an ideal gas. Parameters in point 1 are
pressure p1 = 550000Pa, temperature T1 = 293.15K.
The third parameter is gas pressure p2s which varies
in the interval 800000 to 2500000Pa. For calculation
of real gas isentropic change the method described in
paragraph 7.1 was used. This method is equivalent to
method of paragraph 7.2 when ηs = 1.

For calculation of temperature T2s of ideal gas the
Equation (30) was for p2a = p2s = p2. Isentropic
change of enthalpy was calculated from Eq. (18) in
form

∆Hs = z1RT1
k

k − 1

[(
p2

p1

) k−1
k

− 1
]
, (43)

where z1 and k were calculated from BWR EOS. Re-
sults of all calculations are on Figures 4, 5 and 6.

9. Conclusion
The methods described in this contribution exactly
solved problem of calculation of the isentropic effi-
ciency for various input parameters. In case that
efficiency is equal zero above described procedures
are suitable for calculation of isentropic process. The
above described methods advantageously use the di-
mensionless variables defined in Table 5 and real gas
EOS.

It is evident from the work that some approximate
procedures can lead to inaccurate results.
Methods described here together with method de-

scribed in [6] and in [7] and suitable real gas EOS
form the basic tools for thermodynamic calculations
of compressors or others flow machines.

List of symbols
T thermodynamic temperature [K]

p pressure [Pa]
R molar gas constant [J/(mol K)]
z compressibility factor [–]
ρ molar density [mol/m3]
V molar volume [m3/mol]
k isentropic exponent [–]
CV molar heat capacity at constant volume [J/(mol K)]
Cp molar heat capacity at constant pressure [J/(mol K)]
H molar enthalpy [J/(mol)]
S molar entropy [J/(mol K)]
−→x vector of molar fractions of gas mixture [–]
η efficiency [1]
T0 standard temperature [K]
p0 standard pressure [Pa]
EOS equation of state

INDEXES:
s isentropic
a actual
1 inlet, input
2 discharge, output
id ideal gas
0 thermodynamic quantities of ideal gas (upper index)
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F1 = S1(T1, ρ1)− S2(T2s, ρ2s)

F2 = p2s

ρ2sRT2s
− z2(T2s, ρ2s)

F3 = ∆Hs − [H2(T2s, ρ2s)−H1(T1, ρ1)]
F4 = ηs[H2(T2a, ρ2a)−H1(T1, ρ1)]− [H2(T2s, ρ2s)−

−H1(T1, ρ1)]
F5 = p2s

ρ2aRT2a
− z2(T2a, ρ2a)

F6 = [H2(T2a, ρ2a)−H1(T1, ρ1)]−∆Ha

F7 = ηS∆Ha − [H2(T2s, ρ2s)−H1(T1, ρ1)]

F8 = z2(T2a, ρ2a)T2aρ2a − z2(T2s, ρ2s)T2sρ2s

Table 3. Functions Fi.

∂F1

∂T2s
= R

T2s
(1 + 2QU2s +QC2s)−

∑
xiC

0
pi(T2s)

T2s

∂F1

∂ρ2s
= RQT2s

ρ2s

∂F2

∂T2s
= −QT2s

T2s

∂F2

∂ρ2s
= −Qρ2s

ρ2s

∂F2

∂T2a
= ∂F2

∂ρ2a
= ∂F6

∂T2s
= ∂F6

∂ρ2s
= ∂F7

∂ρ2a
= 0

∂F3

∂T2s
= ∂F4

∂T2s
= ∂F7

∂T2s
= −R(QT2s − 2QU2s −QC2s−

−1)−
∑

xiC
0
pi(T2s)

∂F3

∂ρ2s
= ∂F4

∂ρ2s
= ∂F7

∂ρ2s
= RT2s(QT2s −Qρ2s)

ρ2s
∂F4

∂T2a
= ηs[R(QT2a − 2QU2a −QC2a − 1)+

+
∑

xiC
0
pi(T2s)]

∂F4

∂ρ2a
= ηs

RT2a(Qρ2a −QT2a)
ρ2a

∂F1

∂T2a
= ∂F1

∂ρ2a
= ∂F5

∂T2s
= ∂F5

∂ρ2s
= 0

∂F5

∂T2a
= −QT2a

T2a

∂F5

∂ρ2a
= −Qρ2a

ρ2a
∂F6

∂T2a
= R(QT2a − 2QU2a −QC2a − 1)+

+
∑

xiC
0
pi(T2s)

∂F6

∂ρ2a
= RT2a(Qρ2a −QT2a)

ρ2a

∂F8

∂T2s
= −ρ2sQT2s

∂F8

∂ρ2s
= −T2sQρ2s

∂F8

∂T2a
= ρ2aQT2a

∂F8

∂ρ2a
= T2aQρ2a

Table 4. Derivative of functions Fi.
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z = z(T, ρ) = p

RTρ

S(T, ρ,−→x ) =
∑

x1

[
S0
i (T0) +

∫ T

T0

C0
pi(T )
T

dT

]
−

−R ln zRTρ
p0

−R
∑

xi ln xi +R(ln z −QF −QU )

H(T, ρ,−→x ) =
∑

x1

[
H0
i (T0) +

∫ T

T0

C0
pi(T )dT

]
+

+RT (z − 1−QU )

Qρ = z + ρ

(
∂z

∂ρ

)
T

QF =
∫ ρ

0
(z − 1)d(ln ρ)

QT = z + T

(
∂z

∂T

)
ρ

QU = T

(
∂QF
∂T

)
ρ

QC = T 2
(
∂2QF
∂T 2

)
ρ

Table 5. Relations for calculation of entropy and
enthalpy of real gas and relations for calculation of
dimensionless quantities Q [10].

72


	Acta Polytechnica CTU Proceedings 20:65–72, 2018
	1 Introduction
	2 Isentropic efficiency
	3 Equation of isentrope
	4 Reversible process, ideal gas, constant CV0 (perfect gas)
	5 Reversible process, general equation of isentrope
	6 Methods of calculation of isentropic process and isentropic efficiency
	7 Calculations based on the real gas EOS
	7.1 Example of the solution by Newton's method
	7.2 Calculation of T2s, Ha from known parameters p1, T1, p2a and s (figure 2, table 2 - item 1)
	7.3 Calculation of T2a, s from known parameters p1, T1, p2a and Ha (figure 2, table 2 - item 2)
	7.4 Calculation of p2a, Ha from known parameters p1, T1, T2a and s (figure 2, table 2 - item 3)
	7.5 Calculation of p2a, s from known parameters p1, T1, T2a and Ha (figure 2, table 2 - item 4)
	7.6 Calculation of Ha, s from known parameters p1, T1, p2a and T2a (figure 2, table 2 - item 5)

	8 Example
	9 Conclusion
	List of symbols
	References

