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Abstract. The exact description of the arbitrarily curved geometries, including conic sections, is an
undeniable advantage of isogeometric analysis (IGA) over standard finite element method (FEM). With
B-spline/NURBS approximation functions used for both geometry and unknown approximations, IGA
is able to exactly describe beams of various shapes and thus eliminate the geometry approximation
errors. Moreover, naturally higher continuity than standard C0 can be provided along the entire
computational domain.
This paper evaluates the performance of the nonlinear spatial Bernoulli beam adapted from formulation
of Bauer et al. [1]. The element formulation is presented and the comparison with standard FEM
straight beam element and fully three-dimensional analysis is provided. Although the element is capable
of geometrically nonlinear analysis, only geometrically linear cases are evaluated for the purposes of
this study.
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1. Introduction
The desire for the automatic connection between
Computer-aided design (CAD) and Finite element
analysis (FEA) has been the crucial impulse for the
development of isogeometric analysis [2]. The idea of
IGA is to use the basis functions used for the geom-
etry description in CAD also as the approximation
functions for the analysis. This results in the possibil-
ity of only one model shared between the design and
analysis.

Isogeometric approach introduces into the analysis
some other very important features. One of them
is a possibility to exactly model arbitrarily curved
geometries, including a conic sections which can be
only approximated by standard polynomial basis func-
tions. This makes it very convenient for the use in
the analysis of curved beams.
The focus of this paper is placed on the geometri-

cally nonlinear three-dimensional Bernoulli beam [1, 3].
The beam formulation is briefly introduced and the
performance over standard FEM approaches is evalu-
ated.

2. NURBS-based analysis
The most wide-spread technology in CAD indus-
try are NURBS (Non-Uniform Rational B-Splines).
The NURBS curve is obtained by linear combination
of Cartesian coordinates of the control points P and
NURBS functions Rpi

C(ξ) =
n∑
i=1

Rpi (ξ)Pi. (1)

Each NURBS function is generated by weighting B-
spline functions Np

i with a given weight wi associated
with control point Pi

Rpi (ξ) = Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

. (2)

B-spline functions form a special subset of NURBS
functions (corresponding to constant wi) and are de-
rived recursively starting with a piecewise constant
functions

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1
0 otherwise , (3)

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), (4)

where p is the degree of the B-spline function, ξi is
the coordinate of the ith-knot and ξ ∈ 〈0, 1〉 is a
parametric coordinate.

The computational domain in Isogeometric analysis
(IGA) is firstly divided into patches, which are further
divided into knotspans (often referred to as elements
in IGA). Understanding of knotspans is similar to
elements in standard FEM, nevertheless higher conti-
nuity up to Cp−1 between knotspans can be achieved
naturally using NURBS, unlike C0 in standard FEM.
Moreover, the NURBS basis functions are generally
non-interpolatory. In the knots (points which are di-
viding patch into knotspans), the continuity can be
locally decreased up to C0 by knot multiplication,
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Figure 1. Description of B-spline (NURBS) finite element geometry. The geometry is modeled by one patch
consisting of two knotspans with quadratic NURBS approximation.

which is a standard technique in NURBS technology.
This procedure imposes the interpolatory behavior of
the functions at the particular point.
For better understanding of NURBS see Fig. 1,

where mapping between real and parametric geometry
is illustrated. For more information the reader could
refer to [4].

3. Beam element formulation
The formulation of the presented three-dimensional
beam element [1] is based on Bernoulli beam the-
ory and accounts for the geometrically nonlinear be-
haviour. Bernoulli kinematics assume that the orthog-
onality of the cross-section to the center line is pre-
served after deformation and that the cross-sectional
dimensions remain unchanged. The element has four
degrees of freedom in each control point: three global
displacements u, v, and w and additional degree of
freedom corresponding to rotation around the cen-
ter line ψ. The rotational degree of freedom enables
the element to develop a torsion (warping effects are
neglected here) and also to model initially twisted
beams.

3.1. Geometric description
In the following, the standard notation using upper-
case and lower-case letters for the undeformed and
deformed configuration, respectively, is adapted. The
beam formulation (see Figure 2) starts from three-
dimensional approximation reduced using Bernoulli
kinematic assumptions to the displacements of the cen-
ter line, which is given by the position vector Xc (xc).
The position vector of the center line is described as
a linear combination of the control points coordinates

X̂i and the corresponding basis functions Rpi

Xc =
∑
i

Rpi X̂
i, (5)

xc =
∑
i

Rpi x̂
i. (6)

Deformed position vector is given as

x̂i = X̂i + ûi, (7)

where ûi is a vector of global degrees of freedom
(u, v, w).

Additionally to the center line, the cross-section
orientation is described by a moving trihedral given by
the base vectors Ai (ai) with i ∈ {1, 2, 3}. A position
vector of an arbitrary point of a beam continuum
given by coordinates X (x) can be expressed as

X(θ1, θ2, θ3) = Xc(θ1) + θ2A2(θ1) + θ3A3(θ1), (8)
x(θ1, θ2, θ3) = xc(θ1) + θ2a2(θ1) + θ3a3(θ1), (9)

where θi are the convective contravariant coordinates.
The first components of a moving trihedral A1 and

a1 are aligned with a normalized tangents T and t,
respectively, and are computed as

A1 =
∑
i

Rpi,1X̂
i, (10)

a1 =
∑
i

Rpi,1x̂
i, (11)

where (·),i denotes the derivative with respect to the
coordinate θi. The remaining components Aα with
α ∈ {2, 3} are orthogonal to the tangent of the center
line (resp. A1) and are described by the reference
trihedral, given by A0

α,T0, as

Aα = R̄T(Ψ)Λ(T0,T)A0
α, (12)

where Ψ is a initial rotation about a tangent of a
beam, and Λ and R̄T are the two key operations used
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Figure 2. Illustration of the beam in its undeformed and deformed configurations.
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Figure 3. The Λ(T0,T) and R̄T(Ψ) operations used for the alignment of the cross-section at the current position.

for the alignment of a moving trihedral illustrated in
Figure 3. While the mapping matrix Λ(T0,T) aligns
the reference trihedral given by the tangent T0 to the
tangent T at the current position, the rotation matrix
R̄T(Ψ) rotates the aligned reference trihedral about
T with given rotation Ψ. The rotation Ψ = Ψ(θ1) is
calculated using basis functions and values Ψ̂i assigned
to the control points. The Euler-Rodriguez formula [5]
is used to define both the mapping matrix Λ and the
rotation matrix RT.
Analogical procedures denoted as Λ(T, t) and

R̄t(ψ) are used to align the moving trihedral of the
undeformed to the deformed configuration. The base
vectors aα of the deformed configuration are given as

aα = R̄t(ψ)Λ(T, t)Aα, (13)

where ψ = ψ(θi) is a rotational degree of freedom
evaluated at the current position θi. The base vectors
of the undeformed continuum Gi are defined as Gi =
X,i leading to

G1(θ1, θ2, θ3) = A1(θ1) + θ2A2,1(θ1) + θ3A3,1(θ1),
G2(θ1) = A2(θ1), (14)
G3(θ1) = A3(θ1)

with analogical equations for the base vectors gi = x,i
of the undeformed configuration. In the sequel, dot
products Gi ·Gj ( gi · gj) and Ai ·Aj ( ai · aj) are
denoted as Gij (gij) and Aij (aij), respectively.

3.2. Green-Lagrange strain tensor
The Green-Lagrange strain tensor E calculated for the
curvilinear coordinate system is defined as

Eij = 1
2 (gij −Gij) . (15)

and for the orthogonal base vectors, the transformation
to the Cartesian coordinate system denoted with (̃·) is
given by

Ẽij = Eij
‖Gi‖2‖Gj‖2

. (16)

By substituting geometric relations into the strain ten-
sor, the individual components of the tensor can be
derived. During the derivation additional simplifica-
tions are made assuming that only a slender beam is
considered (b, h << Lwhere b and h are cross-sectional
dimensions and L is a length of the beam) resulting in
the following equations for the diagonal term E11

E11 = 1
2(a11 −A11)︸ ︷︷ ︸

ε

+θ2 a2,1 · a1 −A2,1 ·A1︸ ︷︷ ︸
κ21

+θ3 a3,1 · a1 −A3,1 ·A1︸ ︷︷ ︸
κ31

. (17)

The diagonal terms Eαα as well as the shear term
E23 are equal to zero. This yields from the Bernoulli
assumptions (undeformable cross–section). For the
off-diagonal terms E12, E13

E1α = 1
2θ

β (aβ,1 · aα − (Aβ,1 ·Aα)︸ ︷︷ ︸
κβα

, (18)

where (α, β) ∈ {(2, 3), (3, 2)}.
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3.3. Constitutive equations
The energetically conjugated stress tensor to the
Green-Lagrange strain tensor is the Second Piola-
Kirchhoff tensor S. Elastic isotropic material is con-
sidered within this work and St. Venant–Kirchhoff
material is applied. As the beam formulation is re-
duced to the center line and Bernoulli theory is as-
sumed, the shear forces S̃23 and S̃32 and normal forces
S̃22 S̃33 vanish and the full constitutive relation can
be reduced to S̃11

S̃12

S̃13

 =

 E 0 0
0 G 0
0 0 G


︸ ︷︷ ︸

D

 Ẽ11

Ẽ12

Ẽ13

 , (19)

where E is Young’s modulus, G is the shear modulus
and D is a reduced elasticity matrix.

3.4. Principle of Virtual Work
The system is in equilibrium when the overall virtual
work of the system is equal to zero

δW = −δWint + δWext = 0. (20)

The internal end external virtual work of the system
is given by

δWint =
∫

Ω
S : δEdx, (21)

δWext =
∫

ΓN
t : δudx+

∫
Ω
ρ0B : δudx, (22)

where Ω and ΓN are the domain and the Neumann
boundary, respectively. The external virtual work
depends on the boundary forces t, body forces B and
material density ρ0.

By substitution of expressions for the virtual Green-
Lagrange strain tensor obtained from (15), constitu-
tive relations (19) and performing linearization the
following incremental relation can be obtained

∑
s

Krs∆us = −Rr, (23)

where ∆us are the displacement increments and

Rr = −(F intr + F extr ) (24)

= ∂Wint

∂ur
+ ∂Wext

∂ur
, (25)

Krs = ∂Rr
∂us

= ∂2Wint

∂ur∂us
. (26)

4. Numerical example
The described beam element has been implemented
and tested on the example of helicoidal spring (see
Figure 4). This problem represents fully three-
dimensional structure where the all membrane, bend-
ing and torsion effects are present. The geometry is

F = 1

t

t

E = 108

ν = 0.0

Figure 4. Helicoidal spring cantilever subjected to
the unit force tip load and its cross-section.

Figure 5. Helicoidal spring geometry for different
thickness/length ratios: 0.1, 0.05, 0.025, 0.0125.

given by

Xc(θ1) =

 10 sin
(
θ12π

)
10 cos

(
θ12π

)
20 θ1

 . (27)

The structure is subjected to the unit tip force load.
Different dimensions of the square cross-section have
been used in the analysis, in order to evaluate the
performance and the applicability of the underlying
assumptions. The studied geometries can be observed
in Figure 5, where helicoidal springs with different
thickness/length (t/L) ratios (0.1, 0.05, 0.025 and
0.0125) are illustrated.
The results have been compared with results ob-

tained using standard FEM straight beam element
with cubic approximation [6]. This element allows
for the analysis of both thick and thin beams and is
naturally locking-free. The beam has been used in
two different configurations: i) the element satisfying
Bernoulli assumptions; ii) the element accounting also
for the shear effects.
The results can be observed in the Figure 6. As

expected, for the thick beam configuration the results
obtained using classical FEM or IGA elements with
Bernoulli assumptions differ from the standard FEM
beam element with account for the shear deforma-
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Figure 6. Comparison of isogeometric beam element with cubic (IGA p = 3), quartic (IGA p = 4) and hexic (IGA
p = 6) approximation with standard FEM straight beam element with Bernoulli assumptions (FEM - thin) and
with account for shear effects (FEM - shear). The vertical axis corresponds to the vertical tip displacement w, the
horizontal axis corresponds to the number of nodes (control points).

tion. This difference is diminishing with the smaller
thickness/length ratio.
In addition to the beam elements, the fully three-

dimensional analysis has been assessed. The enormous
number of nodes, in comparison with beam elements,
have to be used in order to obtain sufficiently accu-
rate results. Finally, the mesh consisting of 102800
nodes (20× 20× 257) has been used. For the thin
beam with t/L = 0.0125, the obtained deflection is
w = −3.877e−3. This result is slightly higher than
the results obtained using beam assumptions. The
difference between the full 3D and beam models is
getting bigger as the height to length ratio increases.
This difference is indicating, that the beam theory as-
sumptions are no longer adequate. Overall, the results
demonstrate the superior convergence properties of
the IGA element. This is due to its ability to capture
curved geometry and natural high-order interpolation.

5. Conclusions
The spatial isogeometric element based on the work
of A. M. Bauer et al. [1] has been implemented and
its convergence properties have been evaluated in this
contribution. The element formulation is geometri-
cally nonlinear, however only the geometrically linear
analysis has been considered in this paper. The per-
formance of the presented element has been compared
with standard FEM beam element using benchmark
problem of helicoidal spring.
For the higher thickness/length ratios t/L = 0.1, 0.5

the element does not provide good results due to the
limitations of Bernoulli assumptions. For the thin
beams analysed, the excellent results are obtained.
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