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ABSTRACT. The solvent exchange methods are commonly used in order to arrest cement hydration

reaction.

This paper presents preliminary results of experimental investigation of cement paste

microstructure under short-term (24 hours) exposure to acetone as a solvent in order to estimate the
influence of solvent soaking time. The methodology to determine the effect of soaking time based
on numerical prediction is also presented and described. The immersion of cement samples with the
cross-section of 10 X 10 mm in acetone for 24 hours at the sample age of 15 hours does not enable
to fully stop the hydration reaction, however, it can slow down the hydration reaction significantly.
According to the comparison of several measured data (nanoindentation, scanning electron microscopy,
observation made by optical microscope, mercury intrusion porosimetry) at the sample age of 1 month
with the numerical simulation, the equivalent sample age is determined as approximately equal to

69 hours.
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1. INTRODUCTION

The hydration process of cement paste often has to
be stopped in order to allow precise investigation
and measurements of the alteration of cement paste
properties over time. There are a numerous amount of
methods to stop the hydration reaction [IH4], which
can be divided into the following two groups:

(1.) Direct drying. The essence of the direct dry-
ing methods is to transform water into the vapor.
The water vapor may escape freely and hydration
reaction stops due to the lack of water, however,
the direct drying methods are accompanied by the
rapid change in temperature or pressure, which may
damage microstructure of the sample or alter the
cement paste properties and distort the results of
the measurements [5H7]. The following types of
direct drying are used in the available literature:

e oven drying [5 8, 9],
e microwave drying [I0HIZ],

e vacuum drying [13],

freeze drying [14],
D-drying [15],
P-drying [I5], etc.

(2.) Solvent exchange. The mechanism of solvent ex-
change methods is following: the solvent penetrates
into the sample, mixes with free water and evap-
orates rapidly due to its low boiling point. It is
believed that solvent exchange methods have lower
impact on cement paste microstructure, however, it
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was reported [I6] [I7] that solvents may react with
cement paste hydrates and alter its properties. Also,
it is difficult to entirely remove solvents, therefore,
the chemical composition of the cement paste may
be affected by the solvent. The following types of
solvents are used in the available literature:

e acetone [8] 18],

e methanol [19, 20],

e cthanol [21] 22],

e isopropanol [I4} [19],
e tetrahydrofuran [1],

e dimethyl sulfoxid [20],
e benzene [16],

e pentane [23], etc.

From the above, it is obvious that the method to
stop the hydration reaction should be chosen according
to the subject of interest. This study is focused on
cement paste microstructure investigation, therefore,
the solvent exchange method was chosen and the
acetone was used as the solvent.

The necessary solvent soaking time to stop the
hydration reaction depends on many factors, such
as porosity, diffusivity, sample cross-section. Poros-
ity and diffusivity of early age cement paste change
rapidly over time, therefore, the necessary solvent
soaking time has to be a function of cement paste
age. The majority of the research does not provide
a sufficient explanation of the chosen soaking time.
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Another complication is that it is impossible to de-
termine whether the reaction was stopped during the
solvent soaking and the additional experiments are
needed for this purpose. Therefore, the experimental
investigation of the influence of solvents on cement
paste has to be performed in order to determine the
necessary solvent soaking time to stop the hydration
reaction of early-age cement paste.

This paper presents preliminary results of the ex-
perimental investigation of early-age cement paste
microstructure change under short-term (24 hours)
exposure to acetone in order to estimate the influence
of acetone soaking time. The methodology to deter-
mine the effect of soaking time based on the numerical
prediction is also presented and described in detail
below.

2. EXPERIMENT

The cement paste which consists of CEM I 42.5R
EXTRACEM and water with water-to-cement ratio
of 0.38 was used to produce small-scale 10x10x80 mm
samples. The cement clinker composition is shown
in Table[l] The samples together with the plexiglass
moulds were insulated by polyethylene foil till the age
of 15 hours.

After demoulding, all the samples were immersed in
acetone for 24 hours at the sample age of 15 hours in
order to stop the hydration process. After that all the
samples were dried in oven at 50 °C till equilibrium
in order to remove acetone. The samples were packed
in polyethylene foil and were stored in box with silica
gel until the examination in order to avoid possible
moisture ingress [24].

Environmental temperature and relative humidity
were recorded starting from the mixing till packing
with the interval of 1 minute. The average environ-
mental temperature was 20.7 °C and relative humidity
was 72.8% (excluding oven drying).

The amount of anhydrous clinker was obtained us-
ing three different techniques, namely, nanoindenta-
tion (NANO), scanning electron microscopy (SEM)
and observation made by optical microscope (OPT)
at the sample age of one month.

The surface of the sample sections, which were used
for nanoindentation and SEM and OPT investigation,
was polished with silica carbide paper to achieve a
smooth surface. The nanoindentation of the polished
sample sections was carried out with a Hysitron Tri-
bolab Ti-700 with the Berkovich diamond tip. Five
grids of 10 x 10 indents with the spacing of 10 pm
were predetermined on the center part of the sample
surface. The nanoindentation was performed using
the force control test with the trapezoidal loading dia-
gram. The sample surface was loaded by the diamond
tip linearly during three seconds till the maximum
force of 2mN was reached with a following 20 seconds
holding period and 3seconds of unloading. The in-
dentation elastic modulus was determined from the
obtained load-displacement curves using the Oliver

and Pharr theory [25]. The values of the elastic mod-
ulus higher than 50 GPa and hardness higher than
1.5 GPa correspond to the anhydrous clinker.

After the nanoindentation, the polished sample sec-
tions were dried in a vacuum for three hours with a
vacuum pump. The microstructure investigation of
these sample sections was carried out by a Phenom XL
Desktop SEM and optical microscope. The amount
of anhydrous clinker was obtained using the image
processing technique which was performed by the F1JI
code. The measured volume fractions of anhydrous
clinker and the average value are shown in Table

The sample porosity and its distribution was mea-
sured using mercury intrusion porosimetry (MIP) at
the sample age of one month. The sample sections
were broken into pieces and the center pieces were
selected for further porosity investigation by the mer-
cury porosimeter PASCAL 140 a 440. The measured
porosity was in the range from 32.6% to 36.7% for
different samples.

More detailed description of the experiment is given
in [24].

3. NUMERICAL SIMULATION

In order to understated whether the hydration reac-
tion was fully stopped after the samples immersion
in acetone, the MATLAB code of hydration and mi-
crostructure models, which is based on the models
described in [26H28], was developed. The data pre-
sented in Table [[l and the measured environmental
conditions were used in the analysis. The preliminary
results are described below.

The degree of hydration was calculated using the
multi-component model, where the rate of cement
hydration heat generation is obtained from the sum
of the hydration heat rates of cement components
according to their proportions in cement. The degree
of hydration was calculated according the following
formula

Uhyd = Zpi : (az/@zoo)7 (1)

where p; is the mass ratio of the chemical component
i of cement (C2S, C3S, C3A, C4AF, gypsum, etc.),
@, is the accumulated heat generation of the chemical
component %, @i’oo is the maximum theoretical specific
heat of the component ¢ and ayyq is the averaged
degree of hydration.

The calculated degree of hydration of the individual
clinker components and their average and time when
the samples were immersed in acetone are shown in
Figure[l] [24].

The cement paste microstructure was modeled using
the expanding cluster model, volumetric balance and
simplified calculation of the total pore surface area
described in detail in [26H28]. After that the pore size
distribution was calculated using a simplistic Raleigh-
Ritz distribution function.
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C3S, [%]
63.99

C2S, [%] C3A, [%] CA4AF, [%]
14.30 9.11 8.26

C3S: Alite; C2S: Belite; C3A: Celite; C4AF: Felite.
TABLE 1. Clinker composition of CEM I 42.5R EXTRACEM according to the manufacturer [24].

NANO, [%)]
18.40

SEM, [%)]
18.30

OPT, [%)]
18.89

Average, [%]
18.53

TABLE 2. Volume fractions of anhydrous clinker.
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FIGURE 1. Calculated degree of hydration [24].
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FIGURE 2. Amount of anhydrous clinker.

The volume fraction of anhydrous clinker was cal-
culated as follows

Ve = (1 = anya) - Wp/pp, (2)

where W), is the weight of powder materials per unit
paste volume, p,, is the density of powder materials
and V,; is the volume fraction of anhydrous clinker.

The decrease of the amount of anhydrous clinker due
to the hydration reaction over time with the depiction
of the averaged measured value is shown in Figure 2]
[24].

The capillary porosity was calculated using the
following equation

e =1-Vy =V, (3)
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FIGURE 3. Capillary porosity.
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FIGURE 4. Pore size distribution.

where V; is the volume of hydrated products and V;
is the volume fraction of anhydrous clinker.
The pore size distribution was calculated as follows

(b(?“) = ¢l + ¢g : Vq + ¢c - Ve, (4)

where ¢;, ¢, and ¢. is the interlayer porosity, the
gel porosity and the capillary porosity, respectively,
Vi = 1 — exp(—B;r) is the normalized pore volume,
B; is the porosity distribution parameter and r is the
pore radius.

The calculated capillary porosity over time with
the depiction of measured porosity (the total porosity
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obtained using MIP is considered to be predominantly
capillary porosity) is shown in Figure [3] while the
measured and calculated pore distribution are shown
in Figure |4 [24].

As can be seen in Figure 2] Figure [3]and Figure [4
the hydration reaction was not fully stopped at the
sample age of 15 hours after sample immersion in
acetone for 24 hours, but was slowed down significantly
and the equivalent sample age is approximately equal
to 69 hours according to the preliminary results of
the numerical simulation at the real sample age of 1
month [24]. However, more detailed examination of
the sample microstructure is still needed.

4. CONCLUSIONS

The immersion of cement samples with the cross-
section of 10 x 10 mm in acetone for 24 hours at
the sample age of 15 hours could not fully stop the
hydration reaction, however, it can slow down the
hydration reaction significantly. According to the
comparison of the measured data at the sample age
of 1 month with the numerical simulation, the equiv-
alent sample age is approximately equal to 69 hours.
The calculated volume fraction of anhydrous clinker,
capillary porosity and pore size distribution have a
good correlation with the measured values. However,
the additional experiments with the variable acetone
soaking time and different sample cross-section are
necessary in order to draw the final conclusions.

LIST OF SYMBOLS

anya Averaged degree of hydration [-]
pp  Density of powder materials [kgm™>]
¢ Capillary porosity [-]

¢y Gel porosity [-]

¢1 Interlayer porosity [-]

Porosity distribution parameter [-]

.

ol w

Accumulated heat generation of chemical component
(C38S, C2S, C3A, C4AF) [kecal]
@i,oo Maximum theoretical specific heat of component
(C3S, C28, C3A, C4AF) [kecal]
3 73]

Vo Volume of anhydrous clinker [m° m

Vs Volume of hydrated products [m®m™?]

Vi Normalized pore volume [m®m™3)

Wy, Weight of powder materials per unit paste volume
(kg m ]

p;  Mass ratio of chemical component of cement (C3S,
C2S, C3A, C4AF) [

r  Pore radius [m]
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