
doi:10.14311/APP.2020.26.0039
Acta Polytechnica CTU Proceedings 26:1–6, 2020 © Czech Technical University in Prague, 2020

available online at https://ojs.cvut.cz/ojs/index.php/app

MODELLING OF CRACK PROPAGATION: COMPARISON OF
DISCRETE LATTICE SYSTEM AND COHESIVE ZONE MODEL

Karel Mikeša,∗, Franz Bormannb, Ondřej Rokoša,b,
Ron H.J. Peerlingsb

a Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Prague 6, Czech Republic

b Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB,
Eindhoven, The Netherlands

∗ corresponding author: karel.mikes@cvut.cz

Abstract. Lattice models are often used to analyze materials with discrete micro-structures mainly
due to their ability to accurately reflect behaviour of individual fibres or struts and capture macroscopic
phenomena such as crack initiation, propagation, or branching. Due to the excessive number of
discrete interactions, however, such models are often computationally expensive or even intractable for
realistic problem dimensions. Simplifications therefore need to be adopted, which allow for efficient
yet accurate modelling of engineering applications. For crack propagation modelling, the underlying
discrete microstructure is typically replaced with an effective continuum, whereas the crack is inserted
as an infinitely thin cohesive zone with a specific traction-separation law. In this work, the accuracy
and efficiency of such an effective cohesive zone model is evaluated against the full lattice representation
for an example of crack propagation in a three-point bending test. The variational formulation of
both models is provided, and obtained results are compared for brittle and ductile behaviour of the
underlying lattice in terms of force-displacement curves, crack opening diagrams, and crack length
evolutions. The influence of the thickness of the process zone, which is present in the full lattice model
but neglected in the effective cohesive zone model, is studied in detail.

Keywords: Lattice model, damage, finite element method, cohesive zone model, three-point-bending
test, crack propagation.

1. Introduction
Lattice models with dissipative interactions are often
used for modelling of materials with discrete micro-
structures such as textile, paper, 3D printed materials,
or concrete; see e.g. [1–3]. The advantage of lattice
models lies in their ability to capture microstructural
interactions individually, thus representing the geom-
etry of the underlying micro-structure as well as the
associated constitutive laws accurately and naturally.
Because non-local behaviour is important for mecha-
nisms occurring in the process zone at the crack tip,
discrete models are suitable for problems such as dam-
age localization, crack propagation, and branching.

Lattice models suffer, on the other hand, from high
computational and memory requirements, necessitat-
ing simplifications especially in cases in which multiple
evaluations are required, such as optimization, mate-
rial parameter identification, or stochastic simulations.
Although multiple options for building effective mod-
els exist, in this contribution we focus on a continuum
approximation of the underlying microstructure with
an embedded cohesive zone model. Crack propagation
and its cohesive properties are described in such an ap-
proach by a suitable traction-separation law, whereas
the bulk behavior of the continuum may often be
elastic.

The aim of this paper is detail comparison of crack
propagation for discrete lattice model and continuous
cohesive zone approach. The accuracy and perfor-
mance of cohesive zone model predictions are assessed
on the example of crack propagation in a three-point-
bending test, as shown in Figure 1, by comparison
with the exact underlying full lattice model.

2. Full lattice model
An admissible configuration of a rate-independent sys-
tem of interest is specified by a state variable q =
(r, z), where r stores the kinematic variables (displace-
ment of nodes) and z the internal variables (damage
in bonds).
The energetic solution q is determined using the

following incremental minimization problem at time tk

q(tk) ∈ arg min
q̂∈Q

Πk(q̂; q(tk−1)), k = 1, . . . , nT , (1)

with an initial condition q(0) = q0, where Q denotes
the space of all admissible configurations, and Πk is
an incremental energy defined as

Πk(q; q(tk−1)) = E(tk, q) +D(z, z(tk−1)). (2)

The incremental energy consists of the potential
(Gibbs type) energy E and the dissipation distance D.
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Figure 1. Geometry and boundary conditions of the considered three-point-bending test with a close-up of the full
lattice representation.

The potential energy reads

E(tk, q) = V(q)− fT
ext(tk)r, (3)

where V is the internal free energy and f ext is a vector
of external loads.
The dissipation distance D(z2, z1) measures the

minimum dissipation by a continuous transition be-
tween two consecutive states z1 and z2; for further
details see [4] (Section 3.2). It can be written as

D(z2, z1) = 1
2
∑

α,β∈Bα

Dαβ(z2, z1), (4)

where Bα denotes the set of nodes connected with
node α. Dαβ is the dissipation distance for a single
bond αβ, defined as follows

Dαβ(z2, z1) =
{
Dαβ(ω2)−Dαβ(ω1) if ω2 ≥ ω1
+∞ otherwise,

(5)
where Dαβ(ω) reflects the amount of energy dissipated
in that bond during a unidirectional damage process
up to a given damage level ω.
In each time step, the minimization problem of

Eq. (1) is solved to obtain a local minimum that
satisfies the energy balance

V(q(tk))− V(q(0)) + VarD(q, tk) =Wext(q, tk), (6)

which equates the internally stored energy V(q) −
V(q0) plus the dissipated energy

VarD(q, tk) =
k∑
i=1
D(z(ti), z(ti−1)), (7)

with the work performed by the external forces

Wext(q, tk) =
k∑
i=1

1
2 [f(ti) + f(ti−1)]T[r(ti)− r(ti−1)]. (8)

Unless stated otherwise, the same material model is
considered for each lattice bond. In undamaged state,
it is defined by pair potential

φαβ(lαβ) = 1
2E0A0l

αβ
0
(
ε(lαβ)

)2
, (9)

where E0 is the Young’s modulus and A0 the cross-
sectional area of the bond. l0 denotes the initial length

parameter ε0 εf E0 A0

brittle 0.005 10ε0 1/ε0 1
ductile 0.005 100ε0 1/ε0 1

Table 1. Parameters of the lattice model.

of the bond and ε(lαβ) = (lαβ − l0)/l0 is the bond
strain. The internal energy is defined as

V(r, z) = 1
2
∑

α,β∈Bα

[
(1− ωαβ)φαβ(lαβ)

]
. (10)

The elastic energy of a bond φαβ is reduced by the
damage variable ωαβ(ε), defined as

ωαβ(ε) =
{

1− ε0 exp
(
− ε−ε0

εf

)
if ε ≥ ε0

0 if ε < ε0,
(11)

where ε0 is the limit elastic strain, and the parame-
ter εf characterizes the softening branch of the asso-
ciated stress-strain diagram. The particular choice of
material and geometric parameters corresponding to
the lattice model are specified in Table 1.

For large lattice structures, the simulation must be
controlled by the increment of dissipation, cf. e.g. [5],
because both the (typically used) crack mouth opening
displacement control (CMOD) as well as crack tip
displacement opening control (CTOD) turned out to
be insufficient to keep the energy balance of Eq. (6)
satisfied.

3. Cohesive zone model
The lattice problem as specified in Figure 1 is ap-
proximated with an effective continuous finite element
cohesive zone model (FE-CZ). For that purpose, the
following assumptions are adopted:
(1.) Only one crack is initiated;
(2.) The crack trajectory is a straight line and the
crack propagates vertically in the middle of the
beam;

(3.) All damage processes take place in the predefined
crack path, whereas the rest of the domain remains
elastic.
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Figure 2. Geometry and boundary conditions of the finite element cohesive zone model (FE-CZ) subjected to a
three-point bending test: elastic domain (grey) and cohesive zone (dashed line).

3.1. Model Description
The crack is represented as one cohesive zone, Γcz,
normal to the ~ex direction, which splits the considered
domain Ω into two symmetric parts ΩL and ΩR:

Γcz =
{
~x ∈ R2 : x = xcz = 0, |y| ≤ H/2

}
,

ΩL =
{
~x ∈ R2 : −L/2 ≤ x < xcz, |y| ≤ H/2

}
,

ΩR =
{
~x ∈ R2 : xcz < x ≤ L/2, |y| ≤ H/2

}
,

Ω = ΩL ∪ ΩR,

(12)

where xcz = 0 denotes the horizontal position of the
vertical cohesive zone, cf. Figure 2.

The total free energy Ψ of the FE-CZ model consists
of two contributions, i.e.

Ψ =
∫

Ω\Γcz

ψe dΩ +
∫

Γcz

ψcz dΓcz, (13)

where ψe is the elastic strain energy density

ψe = 1
2 ε : C : ε, (14)

corresponding to a linear elastic isotropic material
under plane strain assumptions, described through a
fourth-order constitutive tensor C, even though the
full lattice is not isotropic. In Eq. (14), the elastic
strain tensor is expressed as the symmetric part of
the displacement gradient ~∇~u, i.e.

ε = 1
2

(
~∇~u+

(
~∇~u
)T
)
. (15)

The cohesive zone potential ψcz is a function of the
displacement jump

~∆ = J~uK = ~uR − ~uL (16)

between the two sub-domains ΩR and ΩL. Due to the
symmetry of the problem, the tangential component
of the jump ∆t vanishes along the cohesive interface,
i.e.

~uL
y = ~uR

y , on Γcz, (17)
meaning that the cohesive zone potential ψcz becomes
a function of the normal crack opening ∆n only.

The constitutive parameters of both models, i.e. C
and ψcz(∆n), are fitted in Section 3.2. For the solu-
tion, in each loading step the resulting total potential

energy of Eq. (13) is minimized with respect to the
degrees of freedom associated with a discretized dis-
placement field of the continuum model. In order
to handle brittle behaviour and snap-back, CMOD
indirect control is used.

3.2. Material Parameter Calibration
Both effective models, i.e. the cohesive zone poten-
tial ψcz and elasticity stiffness tensor C, are identified
directly from the properties of the underlying lattice
by homogenization.

For that purpose, a single periodic unit cell is consid-
ered, as shown in Fig. 3. Note that the cross-sectional
areas of the horizontal and vertical bounding links are
reduced by a factor of 0.5 to account for periodicity.

l0

l0

∆n

∆n

Figure 3. The geometry of unit lattice used for
calibration of elastic properties and traction-separation
law.

By homogenization, the effective stiffness tensor can
be assembled and compared with the plane strain for-
mula for Hooke’s law to obtain the elastic coefficients.
In particular, the effective Young’s modulus reads

Eiso = 5
6
E0A0

l0
(1 +

√
2/2), (18)

whereas Poisson’s ratio ν is fixed at ν = 1/4 for the
given lattice geometry; for more details see e.g. [6,
Appendix A].
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Figure 4. Normalized traction as a function of normalized opening for the two parameter sets considered, cf. Tab. 1.

Figure 5. The damage (red) in bonds computed with full lattice model: evolution of the process zone one step
before crack initiation (top) and final process zone and fully developed crack path in the last step of simulation
(bottom).

Instead of the cohesive zone potential ψcz, the cor-
responding traction, T , defined as

T (∆n) = dψcz(∆n)
d∆n

, (19)

is evaluated numerically from the response of the
periodic unit cell subjected to a prescribed displace-
ment ∆n with the boundary conditions according to
Figure 3. The computed values of tractions corre-
sponding to the two different parameter sets of Tab. 1
are plotted in Figure 4. The cohesive zone poten-
tial ψcz can be obtained from these tractions by nu-
merical integration. But effectively, for the practical
implementation, the values of ψcz are not needed be-
cause the problem is solved for the force balance by
the standard Newton algorithm.

4. Results
In this section, the full lattice model defined in Sec-
tion 2 (referred to as Full lattice), and finite element
cohesive zone model defined in Section 3 (referred to as
FE-CZ ), are compared on a three-point-bending test
of a rectangular specimen of dimensions 2048l0×256l0,
for the brittle and ductile lattice material settings (re-
call Table 1 and Figure 4).

For the Full lattice model, individual bonds start to
damage in a relatively ductile manner, resulting in a
considerable process zone, featuring multiple possible

crack paths, cf. Figure 5 (top). After localization, a
full (central) crack develops across the entire height
of the specimen, cf. Figure 5 (bottom).
The force-displacement responses are compared in

Figure 6. The FE-CZ is able to exactly capture the
initial elastic stiffness. However, the peak force is
significantly underestimated by FE-CZ , for both ma-
terials. The relative peak force error (of FE-CZ in
comparison with Full lattice) is 23.3 % for the brittle
and even 33.4 % for the ductile material. This is
caused by the fact that for the Full lattice a large
amount of inelastic strain along the bottom edge is ac-
cumulated in the process zone. This complex behavior
cannot be captured with one cohesive zone and oth-
erwise elastic behavior naturally results in significant
deviations in the FE-CZ model. The inelastic process
zone in the Full lattice unloads the crack mouth (com-
pared to FE-CZ ) and, therefore, higher loading force
is needed to initiate the crack.

To verify this, we limit the process zone in the lattice
model in a further simulation (referred to as Elastic
lattice). In this model, the damage can evolve only
in a narrow band of width 2l0 positioned along the
vertical axis of the symmetry, whereas the remaining
lattice is considered as purely elastic. To this end, the
critical strain parameter is modified as

εi0 =
{
ε0 if |xi − xcz| ≤ l0
∞ othervise (20)
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Figure 6. Normalized force–displacement diagrams for a brittle (left) and a ductile (right) lattice. The results of
Elastic lattice correspond to the lattice where the damage can evolve only in a narrow band of width 2l0, whereas the
remaining lattice is elastic.

Figure 7. Normalized opening profiles for fixed pre-peak loading force F/(E0A0ε0) = 56 (left) and for post-peak
loading force F/(E0A0ε0) = 14 (right) computed for the ductile material setting.

Figure 8. Normalized crack length as a function of
crack mouth opening displacement (CMOD) computed
for the ductile material setting.

where xi − xcz is the horizontal distance between the
center of the i-th bond and the symmetry axis.
For all considered aspects, the FE-CZ model pro-

vides very similar results to the Elastic lattice, where
the influence of the process zone is removed. It reveals
that the cohesive zone in FE-CZ is able to exactly cap-
ture the damage properties of the underlying lattice
and the error in the peak force is produced mainly by
the missing process zone. This can also be observed
in the difference of pre- and post-peak opening pro-

files, corresponding to a fixed loading force, as shown
in Figure 7 for two magnitudes of the applied force.
Here we clearly see that the FE-CZ and Elastic lat-
tice (both with a narrow process zone) tend to show
significantly larger crack mouth openings before crack
localization. Once the crack localizes and opens, how-
ever, all models provide very accurate results. Also the
kinematics of crack propagation, depicted in Figure 8,
is accurately captured by both the Elastic lattice and
FE-CZ .

The FE-CZ (compared to the Full lattice model
in computing time) provides, however, a substantial
speed-up of the order of 50.

5. conclusion
In this contribution, a cohesive-zone finite element
approach to modelling of crack propagation in materi-
als with discrete microstructures has been compared
against the full lattice model that features phenomena
observed in real materials, such as non-local behaviour,
large deformations and rotations of individual struts,
and distributed cracking.
It has been shown that the cohesive-zone model

achieves a substantial speed up, while being suffi-
ciently accurate in terms of kinematic quantities such
as overall displacement, crack length, or crack opening
profile. On the other hand, the conjugate quantities,
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such as the peak force, are significantly underesti-
mated due to the missing process zone which results
in a significantly more ductile response of the con-
sidered lattice system. With increasing ductility of
the lattice, the accuracy further decreases. The pre-
sented results have also shown that in order to correct
for this deficiency, more ductile behaviour should be
accounted for, e.g., by adding multiple (parallel) cohe-
sive zones that cover the size of the main part of the
process zone. However, the spatial positioning and
orientation of such secondary cohesive zones is not
known and needs to be based on prior knowledge. In
the most general case, every inter-element interface
can be considered as a cohesive zone, which might sig-
nificantly complicate the entire procedure, introduce
a dependence on the discretization (finite element size
and orientation), and cause significant computational
overhead.

Let us note that, apart from the homogenization pro-
cedures used in this paper, the effective cohesive-zone
constitutive parameters can be obtained by fitting
directly the overall macroscopic force–displacement
curves. Although this might improve the macro-
scopic accuracy (in terms of force–displacement curve)
achieved by the cohesive-zone model, such a phe-
nomenological approach would not directly represent
the underlying microstructure. This would in turn
mean that different geometries would require indepen-
dent identifications and that the accuracy in kinematic
quantities (such as crack opening profile) might be
decreased.
The cohesive zone model provides an efficient and

effective tool for the description of crack propagation
in discrete systems, although care must be taken to
position the cohesive zone interface properly to cover
not only the crack trajectories, but also phenomena
important for given problem.

List of symbols
q State variable
r Kinematic variable
z Internal variable
t Parametrization time
nT Number of time steps
Q Space of all admissible configurations
Πk Incremental energy
E Potential energy
D Dissipation distance
V Internal free energy
VarD Dissipated energy
f ext Vector of external loads
α, β Node indices
Bα Nearest-neighbour nodes to α
ωαβ Damage level in a bond αβ
Dαβ Energy dissipated in bond αβ
Wext Work performed by the external forces
φ Pair potential
E0 Young’s modulus of individual bonds

A0 Cross-sectional area
l Length of deformed bond
l0 Initial lattice spacing
ε, ε0 Bond strain, critical bond strain
εf Damage softening parameter

Ω Elastic domain
Γcz Cohesive zone
Ψ Total free energy
ψcz Cohesive zone potential
ψe Elastic strain energy density
ε Elastic strain tensor
σ Elastic stress tensor
C Elastic stiffness tensor
~u Displacement field
∆n,∆t Normal/tangential jump in displacements
Eiso Effective Young’s modulus
ν Effective Poison’s ratio
F Magnitude of the point loading force
u Displacement under the point loading force
x, y Cartesian coordinates
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