
doi:10.14311/APP.2020.26.0144
Acta Polytechnica CTU Proceedings 26:144–148, 2020 © Czech Technical University in Prague, 2020

available online at https://ojs.cvut.cz/ojs/index.php/app

PRE-PROCESSING OF ADDITIVE MANUFACTURING INPUT
FILES FOR NUMERICAL SIMULATION

Jan Voříšek∗, Bořek Patzák

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,
166 29 Prague 6, Czech Republic

∗ corresponding author: jan.vorisek@fsv.cvut.cz

Abstract. In this contribution, we present the concept of a 3D printer software emulator facilitating
the creation of a spatial finite element mesh suitable for the printing process simulation.

The concept is based on gradual processing of a native 3D printer input file (in a G-code format).
This file contains a complete description of manufacturing process consisting of series of individual
commands interpreted by a printer. The effect of each command needs to be precisely evaluated to
obtain the position of the printer head and the volume of the deposited material in any given time.
The calculation is performed in the same way as in the Marlin printer firmware using the trapezoidal
motion curves and a command buffer. To represent a computational model, a discrete voxel model with
variable edge length and time discretization is used. The volume of deposited material is calculated for
each voxel as a function of time. The resulting model is suitable for numerical analysis of the printing
process.

Keywords: Additive manufacturing, 3D printing, 3D printer emulator.

1. Introduction
Additive manufacturing emerged as an innovative man-
ufacturing process in the field of rapid prototyping.
It is based on incremental deposition or sintering of
the material in thin layers. Wide range of materials,
including plastic, metal or even concrete, can be used
to produce spatial objects of complex geometries and
shapes (see Figure 1). The objects can be designed
using currently available CAD software.

Printing a prototype is often more affordable than
making one by hand, and certainly less costly than
contracting a manufacturer to do it by conventional
manufacturing, especially in the fields where low quan-
tities of parts with a high degree of customization
and complexity play the critical role. An extensive
overview of the additive manufacturing methods is
available in [1].

Additive manufacturing consists of several indepen-
dent sub-processes. Everything begins with a 3D
model which, in order to be printed, must be pro-
cessed using specialised software called slicer. The
slicing process produces a sequence of commands to
control the movement and operation of the machine
stored in a G-code file line by line. This file describes
the complete processing (it is directly interpreted by
the printer) and is used as an input for the presented
pre-processing tool. Visualization of the movement
commands can be seen in Figure 2 and Figure 4.

In recent years, there has been an increasing inter-
est in the simulation of the additive manufacturing
process. Parts produced primarily with extrusion of
molten thermoplastics often do not reach designed di-
mensions due to the cracking and warping induced by
large temperature gradients [2, 3]. Such issues are also

Figure 1. Visualization of the geometry of a printed
object in CAD.

Figure 2. Visualization of the movement commands
contained in the input file (single layer). Moves with
material extrusion are drawn with blue color, moves
without extrusion with black color.

144

https://doi.org/10.14311/APP.2020.26.0144
https://ojs.cvut.cz/ojs/index.php/app


vol. 26/2020 Pre-processing of Additive Manufacturing Input Files

present in conventional manufacturing processes like
injection moulding where accurate numerical simula-
tion allows to mitigate such issues by optimising the
object geometry or the production process itself [4].

Numerical simulation of the manufacturing process
is indispensable to produce tailored, defect-free and
optimised products. Due to the complexity of the pro-
cess, the coupled transient thermo-mechanical analysis
is needed for reliable predictions. Some research of the
additive manufacturing has been already conducted
using the Finite Difference Method [3].

In this contribution we assume that the Finite Ele-
ment Method (FEM) will be used to solve the problem.
Our goal is to develop a software tool able to auto-
matically prepare inputs for the FEM model (domain
discretization, boundary conditions, etc.) straight
from the additive manufacturing input files. Not only
should our tool generate a suitable 3D mesh, but it
should also provide the history of the infill percentage
of the single mesh elements. By knowing the infill
percentage, we will be able to consider the two-phase
characteristics of the voxels (thermoplastics and air).
The process is, in a sense, an inverse process of slicing
as it produces the simplified (voxelized) version of the
original object.

Several G-code processing utilities are available on-
line [5, 6]. These tools provide print time estima-
tion and filament consumption. However, they only
consider the printer moves as vectors, and thus con-
structing the voxel model with the material extrusion
history is not possible. Our solution extends the idea
of the movement commands into the 3D space consid-
ering each of them as a block of material with a finite
volume.

2. The model
Finite element model can generally consist of elements
of various shapes. We have chosen a discrete voxel
model with variable edge length along each axis due
to its simplicity.

Assuming all the edge lengths equal leaves us with
a simple cube. This simplification will allow the pre-
computation of shape function values and their deriva-
tives as they are same for all the elements. On top of
that, such a hexahedral element is commonly used in
the FEM software packages.

3. G-code pre-processing
The first step into the simulation of additive manu-
facturing is to pre-process the raw input files. These
files contain a line-separated set of instructions for
the 3D printer to follow. A complete overview of all
the available G-codes is available online [7]. Only
a small subset of the commands, which controls the
deposition of the material, is considered.
Processing of the printer input file begins with de-

termining the duration of individual commands and

particularly of printer head moves. This step is per-
formed only once and results can be reused to generate
simulation inputs with different resolution.

3.1. Duration of moves
It is essential to capture the real printing speed in
the sequence of point-to-point moves. The target
printer speed is defined in the G-code file for each
move, yet the actual motion profile is to be decided
by the individual printer.
Constant acceleration is the most used planning

strategy resulting in a trapezoidal velocity profile due
to its mathematical simplicity and limited computing
power of the 3D printers microprocessors. The printer
stores a limited number of moves, usually 16, in a
buffer and recalculates the acceleration profile allowing
the printer to be able to stop after the last move, if
needed. The typical printing speed of one print layer
can be observed in Figure 3.
Maximal accelerations and velocities must be re-

spected in the direction of each axis. These limits
can be taken from the 3D printer specification or the
source code of the printer controller firmware (Marlin,
RepRap).
Duration of the movements can be determined us-

ing the calculated velocity and known distance. By
gradually summing up the duration of individual com-
mands, we can obtain the current time for any given
print head position. This information is essential for
numerical simulation as we can reverse this procedure
to calculate the position of the print head for any
given time (time step).

Figure 3. Visualization of the printer head speed
during processing of a single layer assuming the trape-
zoidal velocity profile.

3.2. Reconstructing the extrusion
width

Extrusion width is essential for calculating the inter-
section of the extrusion volume and the individual
voxels to determine the amount of material deposition
inside each voxel. It is difficult to define the exact
shape of the extrusion cross-section. Therefore slicers
use various simplified shapes for their internal calcu-
lations, most notably a rectangle with curved sides
(Fig. 6) or a simple rectangle [8].

145



Jan Voříšek, Bořek Patzák Acta Polytechnica CTU Proceedings

Figure 4. G-code visualization of the first layer of a
20 × 20 × 20mm cube.

Figure 5. Activated voxel elements of a first layer of
a 20×20×20mm cube including volume assignment.

Extrusion volume shape is automatically set in the
slicing software based on the nozzle diameter or man-
ually input by the user. However, the information
is not present in the exported G-code file, and so
it must be recalculated using known variables. To
make the calculation slicer-independent, we assume a
rectangular cross-section of the deposition.
The extruded volume can be calculated as

Vin = wihiLi (1)

where wi is extrusion width, hi is extrusion volume
height and Li is extrusion volume length (see Figure 6).
It must be equal to the volume of material coming
into the extruder given as

Vin = πD2

4 ∆E (2)

where D is nozzle diameter and ∆E is length of
extruded material.

The unknown extrusion width is then expressed as

Figure 6. Extrusion width geometry used to produce
G-code in Slic3r software [8]

wi = πD2

4hiLi
∆E (3)

The simplified calculation produces a slightly nar-
rower extrusion width than the original Slic3r value
assuming oval-shaped sides of the cross-section. The
difference is negligible and will be not be taken into ac-
count in any further calculations. For slicers assuming
rectangular extrusion cross-sections, the calculated
width will match the original value.

Extrusion width calculation can be omitted for addi-
tive manufacturing processes based on the laser beam
sintering of material such as Stereolitography. In such
case the width is defined by the beam diameter.

4. Voxel activation and filling
The voxel-activation and the extruded volume assign-
ment is performed for each combination of time-step
length and voxel-size. See Figure 5 for an example of
a single processed print layer.

4.1. The principle
Single depositions, represented by block geometry, are
to be decomposed (projected) into the individual voxel
contributions. Calculating the intersection of two
generally oriented blocks would be very computation-
heavy. Fortunately, the deposition of the material
occurs in horizontal planes, and so the intersection
can be decomposed into two much simpler processes.

The first process is the so called horizontal decom-
position, where extrusion volume (represented as arbi-
trarily oriented rectangle is decomposed to individual
voxel column contributions (rasterization).

In the second step (vertical decomposition), the
extruded volume is distributed to individual voxels
in a column according to the height and position of
extruded material volume.

These two subprocesses together provide history of
extruded material volume in each voxel.

146



vol. 26/2020 Pre-processing of Additive Manufacturing Input Files

Figure 7. Activation sequence of the individual voxel elements. The colour of each voxel corresponds to its infill
percentage (VOF). The centre of the print consists mostly of filled elements shown in red colour while blue elements
near the surface of the printed part are almost empty.

4.2. Optimization
The bounding box of the depositions is calculated to
save computer resources, so only the voxels contained
within the bounding box are considered for the inter-
section calculation. Furthermore, it is possible to use
Bresenham’s line algorithm to only mark the affected
voxels by doing only integer math.

4.3. Issues
Some issues emerged after implementing the above-
described process. Slicers usually produce overlapping
extrusions (see Figure 8) to improve the bonding of
the parallel extrusions. The resulting infill history
contained over-filled voxels (volume over 100%). The
issue is also caused by considering the depositions
as non-continuous (see Figure 9). The second issue
can be eliminated by considering the intersection of
successive depositions. The overlapping volume is
rotated by 180 degrees and moved into the affected
voxels as can be seen in Figure 9.

Figure 8. Overlap of the two concurrent depositions
(overlapping volume marked with red).

Figure 9. Overlap of the two non-straight deposi-
tions (overlapping volume marked with red). The red
volume must be redistributed into the green area.

The voxel volume is checked after each volume differ-
ence assignment, and the surplus volume (over 100%;
if applicable) is redistributed into the eight horizontal
neighbouring elements to keep the maximum volume
of each voxel at 100%.

5. Conclusions
Prototype G-Code pre-processor and voxel-model gen-
erator were implemented in JavaScript based on the
previously formulated methodology. Several real-
world files were processed using the tool. Example of
complex geometry can be seen in Figure 7.

So far, it appears that it is possible to create voxel-
based geometry. The developed tool enables to observe
the time sequence of element activation immediately
after the input file analysis. For example the model
in the Figure 7 was processed on a generic consumer
laptop in one thread using a 1 × 1 × 1 m voxel grid in
2.6 seconds.

It is desirable to perform 3D numerical analysis of
the additive manufacturing process using the knowl-
edge of element activation sequence and the VOF
distribution over time.

6. Future work
Our main goal is to create a robust, user-friendly tool
for the numerical analysis of additive manufacturing
and its optimization. The tool should be able to take
the G-code input file, process it to obtain mesh with
element infill history and finally, run FEM analysis
and post-process the results. This paper solves the pre-
processing part as the first step in an overall complex
process.
For proper numerical simulation, it is desired to

identify the thermal, mechanical, as well as process-
related properties of the materials involved. We foresee
the formulation of suitable constitutive material mod-
els and development of suitable adaptive FE solver.
Furthermore, we also expect to conduct lab-scale mea-
surements to determine constitutive parameters and
develop and calibrate suitable material models.
The idea of gradual voxel activation could be ex-

tended from to the activation of generally shaped ele-
ments of a finite element mesh. The elements generally
do not need to form any regular grid. Therefore current
advanced mesh generators could be used to discretize
printed object. Such elements can be gradually ac-
tivated and filled in a same principle as the voxels.
However, we expect the intersection of the extrusion
block and a general element to be very computationally
expensive.

147



Jan Voříšek, Bořek Patzák Acta Polytechnica CTU Proceedings

Acknowledgements
The financial support of this research by the Grant Agency
of the Czech Technical University in Prague (SGS project
No. SGS19/032/OHK1/1T/11) is gratefully acknowl-
edged.

References
[1] H. Bikas, P. Stavropoulos, G. Chryssolouris. Additive
manufacturing methods and modelling approaches: a
critical review. The International Journal of Advanced
Manufacturing Technology 83(1-4):389–405, 2015.
doi:10.1007/s00170-015-7576-2.

[2] Y. Zhang, K. Chou. A parametric study of part
distortions in fused deposition modelling using
three-dimensional finite element analysis. Proceedings of
the Institution of Mechanical Engineers, Part B:
Journal of Engineering Manufacture 222(8):959–968,
2008. doi:10.1243/09544054jem990.

[3] T. Stockman, J. A. Schneider, B. Walker, J. S.
Carpenter. A 3d finite difference thermal model tailored
for additive manufacturing. JOM 71(3):1117–1126,
2019. doi:10.1007/s11837-019-03338-6.

[4] R. Johansson, D. Konijnendijk. INJECTION
MOULDING SIMULATION — A finite element
approach to analyse thethermodynamics in an IM tool.
Master’s thesis, Queensland University of Technology,
2007.

[5] A. Ustyantsev. gcodevisualizer - a web-based visual
gcode viewer and analyzer.
https://github.com/hudbrog/gCodeViewer. Accessed:
2019-07-11.

[6] gcodeanalyser.com. G-code analyser.
http://www.gcodeanalyser.com/. Accessed:
2019-07-11.

[7] RepRap. G-code — reprap.
https://reprap.org/wiki/G-code. Accessed:
2019-07-10.

[8] G. Hodgson, A. Ranellucci, J. Moe. Slic3r manual —
flow math.
https://manual.slic3r.org/advanced/flow-math.
Accessed: 2019-07-15.

148

https://doi.org/10.1007/s00170-015-7576-2
https://doi.org/10.1243/09544054jem990
https://doi.org/10.1007/s11837-019-03338-6
https://github.com/hudbrog/gCodeViewer
http://www.gcodeanalyser.com/
https://reprap.org/wiki/G-code
https://manual.slic3r.org/advanced/flow-math

	Acta Polytechnica CTU Proceedings 26:145–149, 2020
	1 Introduction
	2 The model
	3 G-code pre-processing
	3.1 Duration of moves
	3.2 Reconstructing the extrusion width

	4 Voxel activation and filling
	4.1 The principle
	4.2 Optimization
	4.3 Issues

	5 Conclusions
	6 Future work
	Acknowledgements
	References

