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Abstract. A tuned mass damper is a device, which can be highly helpful while dealing with
dynamic behaviour of structures. Its proper design is conditioned by knowledge of both loading and
the structure properties. In many cases, the structure can be represented by single degree of freedom
model, which simplifies the design and optimization of tuned mass dampers. Most of studies focus
only on minimization of displacement of the main structure under harmonic force load, however, in
many cases, different frequency response function would be more appropriate. This paper presents an
extension of design formulas for the H∞ optimization of tuned mass dampers for damped structures
and various frequency response functions.
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1. Introduction
Optimal parameters of a tuned mass damper (TMD)
have been a subject of many researches since the first
half of the 20th century. Since then, several differ-
ent optimization criteria have been proposed. The
most common ones are called H2, which minimizes
the area under a frequency response function (FRF)
and H∞, which minimizes the maximum amplitude
magnification factor. A first set of nearly optimal
TMD parameters for undamped structure came from
the existence of invariant points, where the amplitude
is independent of TMD damping [1, 2].

A closed form solution of H∞ optimum parame-
ters of TMD attached to a damped structure have
not been found. In 1978, Ioi and Ikeda presented em-
piric design formulas [3], however, they were derived
only for an insufficiently large mass ratio µ > 0.03,
which makes them inappropriate for certain civil en-
gineering structures. It is interesting that despite the
formulas being derived for a large mass ratio, they
are recommended in footbridge design guidebook SE-
TRA [4]. Design charts allowing use of lower mass ra-
tio µ > 0.01 were published in 1981 [5]. Asami et al.
used a perturbation method to modify the fixed-point
solution regarding a main system damping ratio as
a perturbation [6]. They obtained a series solution,
which is, however, too complicated for engineering
application. Therefore, they have proposed a sim-
plified version. Abubakar presented a simple modifi-
cation of the fixed-point TMD optimum for damped
structure. This modification provides very accurate
solution for minimization of displacement [7]. Despite
many useful formulas and design methods being pro-
posed, some modern guidebooks for civil engineering,

for example [4, 8], keeps using the original approxi-
mate solutions thanks to their easy application.

Most of studies focus on a reduction in a maxi-
mum amplitude of displacement. This is a suitable
criterion for the reduction of structural stress due to
a dynamic load. However, in many cases, the main
purpose of TMD is to reduce the maximum ampli-
tude of acceleration of the main structure. These
cases contain machines and sensors which are sensi-
tive to vibration, because the vibration tolerance is
usually defined in the units of acceleration. Further-
more, human comfort criteria inside buildings or on
footbridges are usually limited by acceleration.

This paper points out the importance of distinction
between displacement and acceleration criteria of the
H∞ optimization. The approximate optimal stiffness
and damping ratio for both criteria are proposed in
this paper covering both ground and force excitation.
Considering the importance of easy practical applica-
tion of the result, the formulas for optimal parame-
ters are composed of standard solutions given by the
fixed-point method and a correction, which takes non-
zero damping into account. Therefore, in the case of
zero structural damping, we obtain standard result
given by the fixed-point method. In the case of non-
zero damping, we obtain results given by the modified
formulas.

2. Equations of Motion
The main structure is represented by a single degree
of freedom (SDOF) system and it consists of a mass
m1, stiffness k1, and damping c1. TMD is composed
of a mass m2, an elastic member with stiffness k2
and a viscous member with damping c2. The struc-
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Figure 1. a) Force excitation, b) Support excitation.
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ẋ1
ẋ2
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ture can be loaded by a harmonic force (Figure 1a)
or excited by support motion (Figure 1b). This pa-
per covers both loading cases, because the optimal
parameters of TMD are not identical for force and
support excitation. The equations of motion are de-

scribed by Eq. 1, where F (t) =
#

f(t)
0

$
in the case of

force excitation, and F (t) =
#

−ẍ0(t)m1
−ẍ0(t)m2

$
in the case

of support excitation. x, ẋ and ẍ denote the displace-
ment, velocity and acceleration, respectively. It is im-
portant to note that x induced by support excitation
is a relative displacement between the support and
the mass. The absolute displacement is xa = x + x0.

3. Optimal parameters
In order to solve Equation 1, it is advantageous to use
following dimensionless substitutions and notation for
further operations [9]:

ω1 =
%

k1/m1 natural frequency of the main
structure,

ω2 =
%

k2/m2 natural frequency of TMD,
µ = m2/m1 mass ratio,
β = ω2/ω1 frequency ratio,
Ω = ω/ω1 forcing frequency ratio,
c1,cr = 2

√
k1m1 critical damping of the main

structure,
c2,cr = 2

√
k2m2 critical damping of TMD,

ξ1 = c1/c1,cr damping ratio of the main struc-
ture,

ξ2 = c2/c2,cr damping ratio of TMD,

Nf (Ω)= (2ξ2βΩ)2 + (β2 − Ω2)2,
Na(Ω)= [1 + (2ξ1Ω)2][(β2 − Ω2)2 + (2ξ2βΩ)2],
Nr(Ω)= [(1 + µ)β2 − Ω2]2Ω4 + (1 + µ)2(2ξ2βΩ)2Ω4,
D(Ω) = [(1 − Ω2)(β2 − Ω2) − µβ2Ω2 − 4ξ1ξ2βΩ2]2 +

+4Ω2[(β2 − Ω2)ξ1 + (1 − Ω2 − µΩ2)βξ2]2.

Assuming a harmonic load according to Figure 1,
a steady state part of response can be expressed from

Eq. 1. The frequency response functions which de-
scribe the normalized response of the structure are
summarized in Table 1.

3.1. fixed-point approach
The approximate H∞ optimum for main structure
with no or negligible damping can be reached by
the fixed-point method. This method was firstly de-
scribed by Den Hartog [1]. He postulated that the
approximate optimum frequency ratio βu

opt is reached
if the value of FRF is equal in invariant points P and
Q, where the value of FRF is not affected by TMD
damping c2. Brock lately stated that the optimum
damping ratio ξu

2,opt can be taken as the average of
two optima, each calculated separately for one of two
points P and Q and he derived the well known for-
mula of optimum damping for FRF No. 1 in Table
1 [2]. Using this approach, we can derive the ap-
proximate optimum solutions for various FRFs. The
results are summarized in Table1. It should be noted
that the optimum parameters are identical for trans-
fer functions 1 and 3, as well as for 2 and 4. This is
can be seen in Na(Ω, ξ1 = 0) = Nf (Ω). However, this
is true only if ξ1 = 0.

3.2. Non-zero damping
The fixed-point approach is not available if we intro-
duce damping of the main structure. An analytical
solution of optimum TMD parameters attached to
a damped main structure have not been found and
according to Asami et al., the solution is probably
impossible [6]. Therefore, we need to rely on empiric
and approximate solutions.

In order to define an empiric formulas for optimum
frequency ratio βopt and optimum damping ratio
ξopt,2, the values of the parameters were found numer-
ically on a surface of 44x41 points for 0.001 ≤ µ ≤ 0.2
and 0 ≤ ξ1 ≤ 0.2. The density of mesh was increased
in the area of low mass ratio 0.001 ≤ µ ≤ 0.005, be-
cause in this range, the optimum values of βopt and
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No. excitation frequency response
function type

frequency response
function βu

opt ξu
2,opt

1 force displacement
&&&&

x1
f0/k1

&&&& =

'
Nf (Ω)
D(Ω)

1
1 + µ

'
3µ

8(1 + µ)

2 force acceleration
&&&&

ẍ1
ω2

1f0/k1

&&&& = Ω2

'
Nf (Ω)
D(Ω)

(
1

1 + µ

'
3µ

4(2 + µ)

3 support abs. displacement
&&&&
xa

1
x0

&&&& =

'
Na(Ω)
D(Ω)

1
1 + µ

'
3µ

8(1 + µ)

4 support abs. acceleration
&&&&

ẍ1
a

ω2
1x0

&&&& = Ω2

'
Na(Ω)
D(Ω)

(
1

1 + µ

'
3µ

4(2 + µ)

5 support rel. displacement
&&&&
ω2

1x1
ẍ0

&&&& = 1
Ω2

'
Nr(Ω)
D(Ω)

'
2 − µ

2(1 + µ)2

'
3µ

4(1 + µ)(2 − µ)

6 support rel. acceleration
&&&&
x1
x0

&&&& =

'
Nr(Ω)
D(Ω)

'
2 + µ

2(1 + µ)2

'
3µ

8(1 + µ)

Table 1. Optimum parameters of TMD based on the fixed-point method.

ξopt,2 change more rapidly then in the rest of the func-
tion. A convergence problem may occur while find-
ing ξopt,2 numerically, because a structural response
is much more sensitive to TMD tuning than to its
damping.

The empiric formulas are combination of the fixed-
point solution and a correction function, which takes
the structural damping into account. The original ap-
proach [3] uses a correction function composed of 2nd
order polynomial of µ and ξ1, but we found it neither
simplest nor best-fitting. Numerous types of func-
tions, including polynomial, exponential, logarithmic
and hyperbolic ones, were tested using a non-linear
regression to find the best approximation of the op-
timum TMD setting regarding a simple application.
Thanks to similar characteristics of the optimum pa-
rameters for all frequency response functions, two
common function were defined:

βopt = βu
opt + ξ1

)
a1ξ1 + a2

*
µ

1 + µ

+ 1
3
,

(2)

ξ2,opt = ξu
2,opt + ξ1[b1 + b2 ln(µ) + b3µ + b4µξ2

1 ] (3)

As we can see in the shape of Eqs. (2) and (3),
the optimum values of TMD parameters βopt = βu

opt

and ξ2,opt = ξu
2,opt if ξ1 = 0. In other words, the for-

mulas preserve the fixed-point approach if the main
structure remains undamped.

The coefficient of determination was chosen as
the comparative criterion for function fitting and it

reached higher than 0.997 in all cases of FRFs for our
selected function types. The maximum error of βopt

was lower than 1%. The maximum error of ξ2,opt

reached up 5%, but it occurred only for extremely
small mass ratio, where the optimum damping is close
to zero and such a high error may be produced rather
by a precisions of the numerical solution than by an
inaccurate approximation. The average relative er-
ror of ξ2,opt was lower than 1% for all transfer func-
tions. The coefficients ai and bi were found using
linear regression and they are summarized in Table
2. Figure 2 presents the improvement of FRF using
desing formulas (2) and (3) for relative displacement
of structure under support excitation.

Figure 2. Improvement of TF 5 (µ = 0.05, ξ1 =
0.05) using desing formulas (2) and (3).

Figures 3-8 compare the numerical results with the
approximations given by design formulas. We can see
that in most cases, the empiric formulas give very pre-
cise results. It is also visible that ξ2,opt rises as the
structural damping increases. However, The effect
of ξ1 to the optimum frequency ratio is slightly more

100



vol. 30/2021 Optimization of tuned mass dampers in damped structures

FRF No. a1 a2 b1 b2 b3 b4

1 -0.7636 -0.8748 0.1801 0.0140 0 -4.6350
2 1.2470 0.2644 0.2101 0.0178 1.264 0
3 -0.5561 -0.8466 0.1782 0.01367 0.01865 -4.3310
4 1.5600 0.2778 0.1985 0.01552 1.1420 29.0900
5 -0.7639 -1.5300 0.2005 0.01650 0.4629 0
6 0.9731 -0.2176 0.1783 0.0145 0 0

Table 2. Coefficients ai and bi for design equations (2) and (3).

Figure 3. Optimum TMD parameters: TF No. 1.

Figure 4. Optimum TMD parameters: TF No. 2.

Figure 5. Optimum TMD parameters: TF No. 3.

101



Jan Štěpánek, Jiří Máca Acta Polytechnica CTU Proceedings

Figure 6. Optimum TMD parameters: TF No. 4.

Figure 7. Optimum TMD parameters: TF No. 5.

Figure 8. Optimum TMD parameters: TF No. 6.

complicated. As we can see in Figures 3-8, increase of
ξ1 leads to decrase of βopt in the case of displacement
FRFs (No. 1,3,5). In the case acceleration FRFs (No.
2,4,6), the increase of ξ1 has an opposite effect. Sen-
sitivity of optimum parameters to the damping ratio
ξ1 varies among FRFs. It is interesting to note that
in the case of acceleration FRFs, the optimum tuning
βopt may slightly rise above one, which is an unusual

situation in TMD design.

4. Conclusions
The design formulas for H∞ optimization of TMD
attached to a damped structure are presented in this
paper. The formulas are appropriate for TMDs with
the mass ratio µ between 0.001 and 0.2, and for the
damping ratio of the main structure between 0 and
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0.2. This is a sufficient range for most of TMDs lo-
calized in civil engineering structures and we consider
the error of design parameters negligible in this range.

The formulas were optimized for six frequency re-
sponse functions, which describe relative and abso-
lute displacement or acceleration for both force and
support excitation. It is necessary to chose a suit-
able FRF for TMD optimization regarding the pur-
pose of TMD. For the purpose of a stress reduction
of the main structure, FRFs which describe displace-
ment should be used. On the other hand, in order
to increase a comfort of people in high-rise buildings
and pedestrian on footbridges, or to reduce the vi-
bration of equipment localized in the main structure,
the acceleration FRFs are an appropriate choice. We
also find out that reduction of acceleration may lead
to TMD tuned to a resonant or even slightly higher
frequency.

An easy application is preserved. Only two simple
formulas are presented, however, they can be used for
all considered transfer functions with different param-
eters ai and bi.
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