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Abstract. Overall mechanical properties of a jointed rock mass are strongly affected by discontinuities
– fractures – that naturally occur in rocks. Stochastically-generated discrete fracture network (DFN)
modeling, which uses a probabilistic approach to describe the spatial distribution of fractures, such
as position, size, or orientation, offers an explicit way to describe geometry of the fracture system.
Many in-situ measurements and analyses presented in literature indicate that fractures’ sizes can be
adequately represented by the power law probability distribution. The parallel plate model of individual
fractures combined with an averaging technique makes it possible to estimate the overall compliance or
stiffness of jointed rock mass (Oda et al. [1]). In the present study, a series of numerical simulations
of jointed rock mass modeled by DFN and Oda’s approach were conducted to analyze the effect of
different sizes of the sampling volume on the overall elastic moduli. The results of the numerical study
show that the variance as well as the average of the apparent stiffness decrease as the size of sampling
element grows.
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1. Introduction
Brittle structures, such as joints and faults, are found
in almost every rock mass body. They vary greatly in
quantity, dimensions, and arrangement. The presence
of these fractures strongly affects the deformational
response of the rock mass to stress and needs to be
taken into account in geotechnical calculations. The
finite element method (FEM) formulated on the ba-
sis on the governing equations of solid mechanics is
often used for these calculations. In such a case, it is
feasible to model discretely (using, e.g., interface ele-
ments) only the less-frequent largest fractures, while
the smaller ones, which occur in a large quantity, can
be represented by the means of so-called equivalent
continuum. In the latter approach, a solid containing
discontinuities is treated as a homogeneous continuum,
whose stiffness or compliance is determined so as to
correspond to the relations between the overall stress
and overall strain of the fractured body. To this end,
homogenization or averaging [2] over a certain sam-
pling volume of the fractured body can be used. The
smallest sampling volume element of the fractured
body “for which the usual spatially constant ‘overall
modulus’ macroscopic constitutive representation is a
sufficiently accurate model to represent mean constitu-
tive response” [3], is called the representative volume
element (RVE). If it is possible to identify an RVE
that is small enough to be idealized as a material point
on the scale of the structural problem analyzed by the
FEM, then the jointed rock mass can be modeled as
a uniform equivalent continuum. If, however, the size
of the RVE is larger than the resolution required for

the structural problem, it is necessary to employ the
concept of the statistical volume element (SVE). The
overall properties of the SVE are, again, determined
by homogenization or averaging. However, they need
to be evaluated over a sufficient number of sampling
volumes of the fractured solid and interpreted statisti-
cally. The rock mass in the structural problem solved
by the FEM is then modeled as a nonuniform equiva-
lent continuum. To this end, random fields respecting
the statistics of the SVEs can be used.
Stochastically-generated discrete fracture network

(DFN) models, which uses a probabilistic approach
to describe the spatial distribution of fractures, such
as position, size, or orientation, offers an explicit way
to describe geometry of the fracture system in rock
mass. Many in-situ measurements and analyses pre-
sented in literature indicate that fractures’ sizes can
be adequately represented by the power law proba-
bility distribution [4], while various distributions for
spherical data can model their orientations [5]. One
appealing aspect of the DFN modeling is that the
parameters of the probability distributions can be
identified based on data from structural-geological
survey, e.g. [6]. It follows that stochastic realizations
of the DFN may serve as the geometrical description
of the fractures in rock mass to be used for the earlier-
discussed sampling and determination of the RVE or
the SVE properties [7–9]. In this article, we present
results of a numerical case study, in which a body of a
jointed rock modeled by stochastic DFN realizations
is sampled by volume elements of different sizes and
the apparent overall Young moduli are evaluated and
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analyzed. The DFNs were generated using the power
law probability distribution of fractures’ sizes and
uniform probability distribution of fractures’ location
and orientation. The parallel plate model of fractures
and the averaging scheme based on the crack tensors
proposed by Oda [1] were employed to calculate the
overall moduli. In contrast to the previous studies [7–
9] we carried out the analysis in 3D, adopted some
different assumptions about the probabilistic distri-
butions of fractures’ sizes and orientations or used a
different averaging approach.

2. DFN model of joints’ geometry
Geometry of individual fractures and the whole frac-
ture system in the modeled rock mass are described by
3D stochastically generated DFN with the following
assumptions.

2.1. Assumptions on fractures’
orientation, spatial distribution,
and shape

Fractures in natural rock can be usually grouped into
sets (populations) based on their geological origin and
dominant orientation. However, for the sake of sim-
plicity, to avoid the issue of overall anisotropy of the
rock mass, we assume the distribution of fracture ori-
entations as uniform on the sphere (Fisher et al. [5]).
Fractures’ centers are generated by Poisson random
process, so the probability distribution of center coor-
dinates in space is also uniform. The total number of
generated fractures is controlled by a given volumetric
density P30 (number of fractures’ centroids over a unit
volume). Individual fractures are idealized as squares.

2.2. Power law distribution of the
fracture sizes

Fractures’ sizes are assumed to follow the power law
distribution, whose probability density function is
expressed as:

p(x) = α− 1
xmin

(
x

xmin

)−α

for x > xmin and α > 1,

(1)
where x is the radius of the circle circumscribed to
the fracture, xmin is the minimum fracture size (lo-
cation parameter), α is the law’s exponent (shape
parameter).
The parameters used for generating stochastic

DFNs and for subsequent calculations are listed in Ta-
ble 1. The volumetric density and power law exponent
are adapted from our previous work [10], where they
were estimated for a highly jointed metamorphic rock
based on data from structural-geological mapping of
fracture traces on tunnel walls. Thus, the range of
fracture sizes covered by the model is appropriate for
the scale of an underground structure (e.g. tunnel).

The DFN models used in this paper were generated
using DFraM software (Kabele et al. [11]).

Parameter Value
volumetric density P30 [ 1

m3 ] 2.56
power law exponent α [-] 3.4
minimum fracture size xmin [m] 0.3
volume of the rock mass [m3] 100·100·100

Table 1. Parameters of DFNs.

3. The model of the overall
stress-strain behavior of
jointed rock mass

Oda [1] proposed the following formula for overall
apparent elastic stress-strain relation of jointed rock
mass:

εij = 1
E

[
(1 + ν)δikδjl − νδijδkl +

(
1
kn
− 1
ks

)
Fijkl

+ 1
4ks

(δikFjl + δjkFil + δilFjk + δjlFik)
]
σkl

= Cijklσkl,

(2)

where E and ν are Young’s modulus and Poisson’s
ratio of the intact rock, respectively, kn and ks are
nondimensional parameters related to the fracture
(joint) normal and tangent stiffness, respectively, δij is
Kronecker’s delta, and Fij and Fijkl are so-called
second and fourth rank crack tensors, respectively:

Fij = 1
V

M∑
k=1

S(k)r(k)n
(k)
i n

(k)
j , (3)

Fijlm = 1
V

M∑
k=1

S(k)r(k)n
(k)
i n

(k)
j n

(k)
l n(k)

m . (4)

Here v is the volume of the sample, S(k) is the area
of k-th fracture inside the sampling volume, r(k) is a
typical size of the fracture equal to a diameter of a
circle with the same area and n(k)

i are the components
of a unit vector normal to the fracture. Note that the
typical size r is assumed as a property of the fracture
independent on the size of the sampling volume and
it is calculated using the original area of the fracture
generated in stochastic DFN.
Individual fractures are in Oda’s approach repre-

sented by the so-called parallel plate model as a set
of parallel flat plates connected by two springs that
symbolize normal and shear stiffness. The fractures’
stiffnesses influence the evaluation of the compliance
tensor through the non-dimensional stiffness param-
eters kn and ks, as seen in Eq. (2). The values of
the rock’s and joints’ mechanical parameters used in
this paper are listed in Tab. 2. The joint’s stiffnesses
were determined assuming a small stress change in a
rock at the depth of 550 m and the other parameters
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Parameter Value
normal stiffness kn [-] 1.356
shear stiffness ks [-] 1.188
Poisson’s ratio of intact rock ν [-] 0.164
elastic modulus of intact rock E [GPa] 44.0

Table 2. Parameters of Oda’s parallel plate model.

(E and ν) were determined with the basis on in-situ
measurements on the same rock as described in [10].

4. Methodology of the analysis

4.1. General considerations

We consider that the overall stiffness of the rock mass
evaluated by Oda’s method on the basis of the DFN
would be eventually used for a finite element analysis
of stress and deformation in the vicinity of an un-
derground structure, e.g. a tunnel or deep geological
repository of radioactive waste. In this scenario, it
is plausible to assume that the equivalent continuum
model would be employed to account for joints only
up to a certain maximum size Amax, while larger frac-
tures would be represented as discrete discontinuities
with, e.g., interface elements or extended FEM. In
the context of the underlying DFN it means that only
the abundant smaller joints need to be present in the
stochastically generated DFN, while the less frequent
larger fractures would be mapped and implemented
in a deterministic way. To set the threshold value
Amax, we used a sufficiently low value of the power
law’s complementary cumulative distribution function
(CCDF), which is defined as the probability of oc-
currence of a fracture with size greater than Amax.
With the parameters listed in Tab. 1 and CCDF equal
to 1·10−5, the corresponding limit fracture size is
Amax = 51.4 m·51.4 m = 2642 m2. This value seems
acceptable also from the geological survey’s point of
view, as brittle geological structures of this size are
likely to be mapped deterministically by boreholes
and trial tunnels.
When the DFN is generated by the DFraM pro-

gram, centers of individual fractures are placed by
a random process inside a given prismatic bounding
box. Thus, there is an inner region along the bounding
box boundary, which could be intersected by fractures
from outside of the box, but these fractures are not
generated as their centers lie outside the box. The
“thickness” of this boundary zone corresponds to the
radius of the circle circumscribed to the largest frac-
ture, that is 51.4 m

2 ·
√

2 = 36.3 m. To avoid distortion
of results by this effect, the sampling volumes must
be taken from a subdomain of the DFN bounding box
excluding these boundary regions.

4.2. Generation of DFN models and
sampling volumes

To obtain a statistically relevant set of sampling vol-
umes for the evaluation of the apparent overall stiff-
ness, 10 different stochastic realizations of DFN model
with the same probabilistic parameters and the same
parameters of rock mass (Tab. 1 and Tab. 2) but dif-
ferent random seed were generated. The bounding
box of the DFN fractures’ centroids was a cube with
side length of 100 m.

Cubic sampling volumes of different sizes were cre-
ated by clipping the DFN models, as shown in Fig. 1.
The samples were always concentric with the DFN
bounding box. Considering the DFN box size and the
elimination of the boundary effect, the side length of
the largest sampling volume was 27.3 m. The edge
of the smallest sampling volume was chosen 0.5 m
to be slightly less than the diagonal of the smallest
fracture (2·xmin). In total, 10 sampling volumes (with
edge sizes 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0,
27.3 meters) were extracted from each realization of
the stochastic DFN.

Figure 1. Sample volume.

4.3. Averaging procedure – calculation
of overall strain and apparent
stiffness

Averaging procedure – calculation of overall strain
and apparent stiffness For each sampling volume,
the overall apparent Young moduli were calculated
using Eq. (1). Although uniform probability dis-
tributions were used for the location and orienta-
tion of the fractures in the underlying DFN model,
which would suggest isotropy, the apparent mod-
uli were calculated for three orthogonal directions:
Ex = 1/C1111, Ey = 1/C2222, Ez = 1/C3333. This
way of calculation allowed us to analyze not only
the magnitude of the stiffness but also its directional
dependence.

5. Results
Figures 2–4 present the dependence of apparent de-
formation moduli calculated in three orthogonal di-
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rections on the size of sampling volume.

Figure 2. Apparent deformation moduli – x axis.

Figure 3. Apparent deformation moduli – y axis.

Figure 4. Apparent deformation moduli – z axis.

The results show the same trends for moduli in all
three directions. As the sampling volume grows, the
mean of the apparent moduli obtained from different
realizations of the DFN decreases and converges to a
certain value. The maxima have the same tendency,
while the minima grow. The dependence of the mean
values can be well approximated by an exponential
curve, as shown by the dotted line. The graphs also
show that the smaller are the sample volumes, the
greater are the deviations of the moduli obtained from
the different realization of the DFN.

6. Preliminary analysis of
anisotropy of apparent
stiffness

From Figures 2–4 it is obvious, that in spite of the uni-
form statistical distribution of fractures’ orientation
in the underlying DFN, the apparent overall moduli
of the rock mass in three orthogonal directions are
not equal. This implies that the overall stiffness of
the rock mass predicted by the model is not isotropic.
Hereafter, we present the results of a preliminary anal-
ysis that will allow us to gain some insight into how

the detected anisotropy is related to the sampling
element size.

Various measures of anisotropy have been proposed
in the literature, especially in connection with crystal
elasticity – see a review e.g. in [12]. However, as
in the present study we examine only the equivalent
deformation moduli, we define the index of anisotropy
ad-hoc as the coefficient of variation of the appar-
ent moduli Ex, Ey, Ez evaluated in three orthogonal
directions:

α = std dev(Ex, Ey, Ez)
mean(Ex, Ey, Ez)

. (5)

It is obvious that for an isotropic material, where
all moduli are equal, is zero, whereas anisotropy, man-
ifested by a larger variation among the moduli, results
in a larger value of α.

Figure 5. Sample size dependence of the index of
anisotropy α.

Figure 5 shows the dependence of the index on
the sampling volume element size. As in the case of
the elastic moduli, we can see that with increasing
size of the sampling volume, the mean and maximum
values as well as the scatter of the index decrease. The
minima do not exhibit a clear trend and fluctuate close
to zero for all volume sizes. The mean value of α for
the largest volume is approaching, but is not equal to,
zero. This is understandable, since the index α can be
only nonnegative and zero mean value would require
that in all model realizations a perfectly isotropic
response was achieved. These observations indicate
that the model converges to an isotropic response (in
the sense of Ex ≈ Ey ≈ Ez). However, we point out
that these are only preliminary conclusions and a more
systematic analysis involving the complete apparent
stiffness or compliance tensor and appropriate index
of anisotropy should be carried out.

7. Conclusions
The concept of using Oda’s [1] averaging procedure
in conjunction with 3D stochastic DFN has been ex-
amined with the aim to determine the dependence of
apparent rock mass stiffness on sampling volume size.
The results of the case study allow us to draw some
interesting conclusions:
• With growing sample sizes, the mean value of the

apparent stiffness is not constant but decreases and
converges to a certain value. The minima and max-
ima converge to the same value.
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• In spite of assuming directionally and spatially
uniform probability distributions of fractures, the
power law variability of fracture size is sufficient
to produce anisotropic overall deformation moduli.
The measure of anisotropy decreases with increasing
sampling volume size.

• The great variance of stiffnesses as well as anisotropy
calculated on smaller sampling volumes (up to about
15 m large side of the sample cube with the parame-
ters used in the present study) means that these vol-
ume elements cannot be regarded as representative
(RVE), but stochastic (SVE). The corresponding
overall properties must be then considered not as
effective, but apparent [13]. Should these overall
properties be used to define equivalent continuum
for finite element analysis of an underground struc-
ture, the variance must be taken into account, e.g.
by using the concept of random fields. It is noted
that this may be relevant for analysis of many struc-
tures in underground engineering, such as tunnels,
where, due to the spatial variability of the stress
field and the size of the structure, model resolu-
tion on the order of 100 m or even 10−1 m may be
required.

• On the other hand, if the required finite element
model resolution is on the order of 101 m or larger,
using the mean stiffness obtained by the averaging
over RVE as uniform effective property of the equiv-
alent continuum may be acceptable. This could
be the case, for example, when variations of the
geostatic stress field need to be estimated for hy-
drogeological simulations on a larger scale.
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