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Abstract. Within the research of electromagnetically excited torsion oscillations in the mechanical
part of traction drive systems of modern railway vehicles, which has been realized at the Faculty of
mechanical engineering at the CTU in Prague, there are two separate simulation models in use. The
basic calculation model, which is utilized to gain basic characteristics of the torsion system as natural
frequencies and natural modes of oscillations. And the complex simulation model, which simulates a
drive of the vehicle. This contribution is focused on the basic calculation model, which has been built
in MATLAB. This model in its first version did not apply the contact between wheels and rails. It was
necessary to find out, if this simplification is relevant with respect to subsequent simulations within
the complex simulation model and its results. Therefore, the contact interaction as a traction force in
longitudinal direction in the wheel-rail contact was realized via the Kalker’s linear theory. This article
deals with the comparison between models with and without the implementation of the wheel-rail
contact and its influence on the damping within the torsion system and retuning of the torsion system.
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1. Introduction
One of the typical features of modern electrical railway
vehicles is the individual mechanical drive of the wheel-
set, e.g. see Figure 1. In principal it means that each
wheel-set has its own propelling unit. This unit mostly
consists of an electrical traction motor, a gearbox and
a coupling connecting both of them. For sure there
are more concepts of such a mechanical drive unit.

Figure 1. A partly-suspended drive of a locomotive [1].

For purposes of this research a fully-suspended drive
layout has been applied. This type of an individual
drive consists of an electrical traction motor, a gear-
box and a hollow shaft, which transmits driving and
braking power between the gearbox and the wheel-set

– Figure 2. Because generally this research is focused
on high-speed and high-power railway vehicles, the
fully-suspended type of a drive train was chosen, as it
is a typical and an appropriate layout for this type of
vehicles.

Figure 2. A fully-suspended drive of a locomotive [2].

2. Basic Mathematical Model
This mathematical model, built in MATLAB, is uti-
lized to provide basic characteristics of a torsion sys-
tem, which schematically represents the design of a
mechanical drive train of a railway vehicle.

The basic characteristics are:

• natural frequencies of oscillations
• natural modes of oscillations
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Knowledge of these characteristics is supposed to be
important for evaluation of frequency analysis, which
will be carried out in subsequent simulations in the
above-mentioned complex simulation model, built in
MATLAB Simulink. Now the complex simulation
model applies some simplifications to do simulations
effective in terms of simulation time, amount of data
and goals of the research. The basic calculation model
supposes also some simplifications as the interaction
in the wheel-rail contact. Because of the frequency
analysis it is appropriate to do a review if the simplifi-
cation of the basic calculation model is reasonable and
if there can be a significant impact on the evaluation
frequency analysis.

2.1. Model with no Wheel-Rail Contact
The mathematical model is based on the scheme of the
torsion system (Figure 3), which respects the layout
of the fully-suspended drive presented in Figure 2.

Figure 3. Torsion system scheme – fully-suspended
drive [3].

Equations of motion describing this system were
derived via the Lagrange method. The matrix nota-
tion of these equation of motion is (1). To calculate
natural modes and natural frequencies of oscillations
these equations are solved as a system without the
vector of excitation [M ], see (2).

[J ][φ̈] + [k][φ] = [M ] (1)

[J ][φ̈] + [k][φ] = [0] (2)

The system (2) was solved via the function eig(k, J),
which is a pre-programed function in MATLAB. This
function returns:

• an eigen vector representing rotation angle φi,j for
a rotation mass Ji and j natural mode of oscillation

• an eigen values vector [λj ] representing j natural
angle frequency Ωj =

√
λj

The eigen values are transformed into natural fre-
quencies fj via the formula (3).

fj =
√

λj

2π
(3)

2.2. Model with a Wheel-Rail Contact
The wheel-rail contact was implemented into the cal-
culation model via longitudinal traction forces T1,
which can be seen in the top view of the drive train –
Figure 4. The wheel-rail contact is simplified so, that

lateral forces and spin moment between the wheel
and the rail are neglected. Practically it means that
it represents rolling of a cylindrical wheel on rails,
not conical profile wheels and sinus movements of the
wheel-set is neglected. Also forces T1 on both sides
are supposed to be same.

Figure 4. Visualization of wheel-rail forces – top view.

The longitudinal traction force T1 is calculated via
Kalker’s linear theory for the wheel-rail contact (4).

T1 = c11 ael bel G sx = C1 sx = k1 sx (4)

In this article details about the Kalker’s theory
will not be presented, but they can be found in [4–
6]. For purposes of this contribution the value of
Kalker’s coefficient c11 = 4, 984 is taken as a fact.
That coefficient itself can varies. Because that theory
is linear, its validity is limited for small values of slip
with respect to adhesion characteristic – phase I in
Figure 5. For the area of higher slip (phase II) the
direction of the curve k1* decreases.

While the value of c11 can be supposed for good
conditions in the wheel-rail contact (dry rails), for
worst conditions (wet or dirty rails) it can decrease
as well. This fact is presented in Figure 6 within
Popovici’s adhesion characteristics.

And therefore because of both effects, the calcu-
lations were carried out also for variations of c11,
specifically for c11/2 and c11/4.

sx = rk ωk − vx

v
(5)

Due to above mentioned simplifications also only
the wheel slip sx in the longitudinal direction is sup-
posed. Its deduction is presented in Figure 7 and its
mathematical representation is formula (5).

[J ][φ̈] + [b][φ̇] + [k][φ] = [0] (6)

Within the torsion system scheme (Figure 8) and
subsequently the equations of motion in the matrix
representation (6) the force T1 creates a damping ele-
ment in the wheel-rail contact. This damping defines
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Figure 5. Traction characteristic and adhesion char-
acteristic of wheelset [4–6].

Figure 6. Popovici’s adhesion characteristics [7].

the formula (7). rk is constant, C1 = k1 (Figure 5 and
Figure 6) will varies according to c11 and the vehicle
velocity v is a variable as well. The calculations for
this system were carried out as an analysis of the
influence of C1 and v on the damping factor.

bW −R = C1
r2

k

v
(7)

The velocity as a calculation parameter was spec-
ified based on the supposed traction characteristics
(Figure 9) of the vehicle, which is a high-speed locomo-
tive for purposes of the research. The applied values
of velocity were from 0 km/h to 200 km/h.

The system (6) was solved by the MATLAB func-

Figure 7. Wheel slip deduction [2].

Figure 8. Torsion system scheme – fully-suspended
drive.

Figure 9. Vehicle traction characteristic.

tion polyeig(k, b, M), which returns eigenvectors and
eigenvalues for defined matrices. Eigen vectors re-
turns values of angle of rotation as described in 2.1.
Eigen values are complex numbers in the form accord-
ing to (8) for this system with damping.

λj = −δj ± i Ωdmp,j (8)

Resulting natural frequencies of oscillation are then
calculated according to (9).

fdmp,j = Ωdmp,j

2π
(9)
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3. Calculation Results
Results of calculations in sections 3.1 and 3.2 below are
respective to the theory from sections 2.1 and 2.2 and
the subsequent conclusion aims to make an analysis
of the velocity influence on the retuning of the torsion
system via damping.

3.1. Model with no Wheel-Rail Contact
The torsion system scheme, which respects the design
of the fully-suspended drive in Figure 2 is a system
with 7 degrees of freedom and seven natural frequen-
cies of oscillation were calculated, see Table 1. Because
the torsion system in this state was considered as a
free system the first natural frequency is 0Hz and it
matches with a free rotation of the system. Natu-
ral modes of oscillation complying with the natural
frequencies are presented in Figure 10 to Figure 16.
Such a considered state of the torsion system can
be agreed with the situation when a railway vehicle
does not generate any force in the wheel-rail contact –
standstill of the vehicle or drive without traction or
brake force.

Natural frequencies of torsion system [Hz]
1. 2. 3. 4. 5. 6. 7.
0 6 57 337 572 857 2403

Table 1. Natural frequencies overview [3].

Figure 10. First natural mode of torsion oscilla-
tions [3].

Figure 11. Second natural mode of torsion oscilla-
tions [3].

Table 2 provides a description of these natural
modes with respect to dominant oscillation of a spe-
cific rotation mass.

Order Respective Dominant Less
of natural oscillations significant

natural frequency of a mass oscillations
modes [Hz]

1. 0 Own free –
rotation

2. 6 Wheel-set
towards –

hollow shaft
3. 57 Wheels of –

wheel-set
4. 337 Wheel-set Pinion

towards towards
hollow shaft rotor

5. 572 Pinion
towards –

rotor
6. 857 Wheel-set

towards
Hollow hollow shaft

shaft joints Gear wheel
towards

hollow shaft
7. 2403 Pinion

towards
rotor –

Pinion
towards

gear wheel

Table 2. Description of natural modes [3].

Figure 12. Third natural mode of torsion oscilla-
tions [3].

Figure 13. Fourth natural mode of torsion oscilla-
tions [3].
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Figure 14. Fifth natural mode of torsion oscilla-
tions [3].

Figure 15. Sixth natural mode of torsion oscilla-
tions [3].

Figure 16. Seventh natural mode of torsion oscilla-
tions [3].

3.2. Model with a Wheel-Rail Contact
In this section the attention will be put on calculated
eigenvalues and respective natural frequencies.

The first group of calculations was done for the value
of the Kalker’s coefficient c11 = C1. With respect
to the damping Figure 17 shows that, the damping
reaches very high values in low velocities and strongly
decrease with increasing velocity. This fact can be
concluded with respect to the third eigenvalue, which
relates to torsion oscillations of the wheel-set, see
Table 2. Regarding natural frequencies see Figure 18.
A small change in the value of the second one can be
observed, from 6Hz to 4Hz. A significant change can
be observed regarding the third one when its value
decreased from 57Hz to 0Hz. This means that the
damping in the wheel-rail contact is so high, that it
suppresses torsion oscillations of the wheel-set.

For the second group of calculations, where C1 =
c11/2 = k1∗, see Figure 5 and Figure 6, the situation
changed. The damping (Figure 19) was very high in
low velocities again and suppressed oscillations of the
wheel-set on the frequency of 57Hz. With increasing
velocity, the damping decreases. Between 100 km/h
and 105 km/h retuning of the system appeared. There

Figure 17. Damping as a function of velocity – c11.

Figure 18. Natural frequencies as a function of ve-
locity – c11.

is a visible jump in damping and change in the third
natural frequency (Figure 20), which started to grow.
Then the third natural frequency increases with de-
creasing damping and approximate to the value of 57
Hz. Also, a small change in the value of the second
natural frequency from 6Hz to 4Hz was observed.

Figure 19. Damping as a function of velocity – c11/2.

In the third group of calculations, where C1 =
c11/4 = k1∗, see Figure 5 and Figure 6, the results
were equivalent to results from the second group. The
difference, which Figure 21 and Figure 22 presents, is
that the point of torsion system retuning occurs in
lower velocity, between 50 km/h and 55 km/h. A small
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Figure 20. Natural frequencies as a function of ve-
locity – c11/2.

change in the value of the second natural frequency
from 6Hz to 4Hz was observed again.

Figure 21. Damping as a function of velocity – c11/4.

Figure 22. Natural frequencies as a function of ve-
locity – c11/4.

The fourth, the fifth, the sixth and the seventh
eigen value and respective damping parameters and
natural frequencies are not mentioned, because the
calculations did not show any influence of the variation
of values of the velocity and the Kalker’s coefficient.

4. Conclusions
Results of calculations presented in Figure 17 to Fig-
ure 22 proved, that the wheel-rail contact can signifi-

cantly influence a behavior of a torsion system, which
means to change some natural frequencies. Specifi-
cally, the third natural frequency related to the oscil-
lations of the wheel-set itself in a very strong way and
weakly the second natural frequency related to oscilla-
tions of the wheel-set towards the hollow shaft. On the
other hand, it was presented, that the variability of
parameters, which characterize the wheel-rail contact,
don’t influence the rest of the torsion system. With
respect to a research it can practically mean, that for
a research oriented on a wheel-set torsion oscillations
and related problematics, the effect of the wheel-rail
contact should be considered. On the other hand,
within a research of torsion phenomenon regarding
the rest of a torsion system, as traction motor, gears
and coupling, the wheel-rail contact can be neglected.

List of symbols
ael main half-axis of contact ellipse [m]
bel secondary half-axis of contact ellipse [m]
b, bW −R damping parameter [Nms.rad−1]
c11 Kalker’s coefficient [-]
f natural frequency [Hz]
fdmp natural frequency of damped system [Hz]
J mass of rotation [kg.m2]
k torsion stiffness [Nm.rad−1]
M external torque [Nm]
T1 Tangential force [N]
rk Wheel radius [m]
sx Wheel slip [%]
φ angle rotation [rad]
φ̇ time derivative of angle rotation [rad.s−1]
φ̈ second time derivative of angle rotation [rad.s−2]
λ eigenvalue [-]
Ω natural angle frequency [rad.s−1]
Ωdmp natural angle frequency of damped system [rad.s−1]
ωk angular speed of a wheel [rad/s]
δ oscillation damping [rad/s]

Acknowledgements
This research has been realized using the support of The
Technology Agency of the Czech Republic, programme Na-
tional Competence Centres, project #TN01000026 Josef
Bozek National Center of Competence for Surface Trans-
port Vehicles This support is gratefully acknowledged.

References
[1] T. Fridrichovský. Studie disertační práce. Praha, 2017.
[2] V. Dybala, M. Libenský, B. Šulc, C. Oswald. Slip and

Adhesion in a Railway Wheelset Simulink Model
Proposed for Detection Driving Conditions Via Neural
Networks. In SBORNÍK vědeckých prací Vysoké školy
báňské – Technické univerzity Ostrava, Řada strojní,
Ostrava, 2018.

[3] V. Dybala. The Electromagnetically Excited
Resonance of the Pinion in Fully-Suspended Drive of a
Locomotive and its Sensitivity on the Torsion Stiffness
of the Rotor Shaft. In Sborník abstraktů konference
STČ, Praha, 2021.

6



vol. 35/2022 Kalker’s Coefficient c11 and its Influence

[4] J. Kolář. Teoretické základy konstrukce kolejových
vozidel. Praha: Česká technika – nakladatelství ČVUT,
2009, p. 276.

[5] J. Kolář. Zborník prednášok II. – XX. Medzinárodná
konferencia – Súčasné problémy v kolajových vozidlách.
In Dynamika individuálního pohonu dojkolí s
nápravovou převodovkou, Žilina, 2011.

[6] J. Kolář. Problémy modelování vlivu svislých
nerovností trati do dynamiky pohonu dvojkolí. In
Železničná doprava a logistika XI, pp. 38–47, 2015.

[7] R. Popovici. Friction in Wheel-Rail Contacts.
Enschede, The Netherlands: University of Twente, 2010.

7


	Acta Polytechnica CTU Proceedings 35:1–7, 2022
	1 Introduction
	2 Basic Mathematical Model
	2.1 Model with no Wheel-Rail Contact
	2.2 Model with a Wheel-Rail Contact

	3 Calculation Results
	3.1 Model with no Wheel-Rail Contact
	3.2 Model with a Wheel-Rail Contact

	4 Cocnlusions
	List of symbols
	Acknowledgements
	References

