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Abstract. This paper illustrates the use of GIS techniques and satellite data in order to analyze
the impact of land use change on the local urban microclimate. Specifically, a case study is presented
that concerns the city of Vienna. Thereby, satellite-based images were used to classify the city of
Vienna into four zones toward the computation of land surface temperatures in two reference years.
The classified maps were then statistically projected into the future, resulting in predicted land surface
temperatures. The findings highlight the relationship between urbanization and temperature rise in the
urban context. The study used data from Landsat 8 satellite in 2013 and 2020. Land cover maps were
generated with QGIS for past and current conditions and future land cover maps were projected and
corresponding land surface temperatures were predicted. The analysis of satellite data highlighted land
surface temperature increase in the city of Vienna. This rise in land surface temperatures correlates
with urbanization-driven change in land use and land cover.
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1. Introduction
Throughout the ongoing expansion and growth of ur-
ban areas and a current percentage of over 50 % of
the world’s population living in urban areas, the en-
vironment is expected to experience massive changes
in the future. Due to this rapid increase of urban-
ization, cities are forced to use and therefore seal
surfaces in order to provide enough space for their oc-
cupants [1]. Numerous cities already show higher air
and surface temperatures than their rural surround-
ing areas, which is commonly known as the urban
heat island (UHI) effect. The rise of intra-urban tem-
peratures has a strong effect on the quality of life for
humans, animals and on vegetation in general [2]. Fur-
thermore, according to the Intergovernmental Panel
on Climate Change (IPCC), world emissions would
have to be cut by 45 % in less than ten years, in order
to stay below the 1.5 K global warming threshold and
to avoid a climate catastrophe [3]. Hence, the investi-
gation of land use and land cover as well as quantifying
their changes with regard to land surface temperature
is of growing importance in urban development [4].

In this context, by projecting the land surface tem-
perature (LST) in an urban setting from two scenarios
into the future, the present contribution may con-
tribute to the efforts toward a better understanding of
the relationship between urbanization and urban ther-
mal environment. Using the capital city of Austria,
Vienna, as an example, the paper presents a GIS-
based approach, starting from obtaining data from
satellite images to a statistical analysis in order to pre-
dict future land surface temperature scenarios. The
research thus aims to explore GIS techniques to obtain

future land cover change projections. Moreover, the
impacts of these projections on the urban thermal
environment are evaluated through analysis of land
surface temperatures.

2. Methodology
2.1. Study site and data
For the methodological part of the study, the city of
Vienna was investigated regarding its climatic and ge-
ographical properties. Moreover, demographic charac-
teristics of Vienna were considered, such as an average
increase of the population growth of 0.8 %, which cor-
relates to the city’s rate of urbanization. By 2050, the
city of Vienna is expected to have about 2.2 million
inhabitants, which is an increase of about 16 % com-
pared to 2020 [5].

Subsequently, the available satellite data was under-
gone a feasibility check in EarthExplorer, a service tool
provided by the U.S. Geological Survey (USGS) [6, 7].
The Landsat 8 data belongs to the dataset “Landsat 8
OLI/TIRS C1 Level-1”, which is a part of the “Land-
sat Collection 1 Level-1” data, courtesy of the U.S.
Geological Survey [7, 8], for the representative years
of 2013 and 2020 was evaluated with regard to cloud
contamination, clarity issues, and other disturbances
that might affect the image accuracy. The most suit-
able datasets recorded by Landsat 8 were acquired in
World Reference System 2 (WRS-2) 190-026 for Vi-
enna, with a maximum cloud coverage of 5 %. In order
to mimic similar scenarios for past and present, re-
spective Landsat 8 images were downloaded for early
September in 2013 and 2020; courtesy of the U.S.
Geological Survey [9]. The data was retrieved with
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Semi-Automatic Classification Plugin (SCP) Version
7.0.0 in QGIS [10, 11], and covers a pixel size of 30 by
30 meters with an actual cloud coverage of below 1 %.

2.2. Land use/cover classification
Within the SCP environment in QGIS, the retrieved
Landsat 8 images relevant to the study area were
reduced in size and converted to reflectance maps.
Converting the raw satellite imagery to obtain re-
flectance requires a metadata file, which was generated
by retrieving the data from the USGS database. The
metadata file contains the required information for the
conversion. Secondly, the Dark Object Subtraction
1 (DOS1) atmospheric correction was applied to the
reflectance images. For the resulting bands, the center
wavelengths of Landsat 8 were defined manually [12].
For the classification of the images, training data was
generated in QGIS. The “macro classes” chosen for
the training input are water, built-up, vegetation, and
bare soil. Within the macro classes, a more detailed
separation was specified following rivers and lakes,
buildings and roads, forests, and grassland, and low
vegetated areas [12]. By applying “region growing
algorithm”, the “regions of interest” (ROI) were se-
lected and assigned to the respective macro classes and
classes according to the spectral distance, minimum
size and maximum ROI width [12]. Ultimately, the
training input file with 49 evenly distributed training
input points was generated and applied to the 2013
and 2020 scenarios.

2.3. Land use/cover prediction
In order to predict the future land use/cover future
scenario, Modules for Land Use Change Simulations
(MOLUSCE) was applied in the study [13]. With
an Artificial Neural Network (ANN), MOLUSCE is
able to generate classified future land use/cover sce-
narios from past and present conditions. Due to the
temporal difference of seven years between the two
reference conditions, the simulation process with MO-
LUSCE was additionally executed five times after
2020, in order to reach the target year 2055. The
projection was calculated with 5000 iterations and
an inaccuracy of 0.1 %.

The past and present raster images were analyzed
through an overlaying process on the land use/cover
data. As a result, MOLUSCE creates a changes map,
which identifies the changes of the land use/cover clas-
sification from past to present scenario. MOLUSCE is
able to compute a transition matrix of the probability
of change between the two given scenarios. The out-
put of this algorithm is a transition potential raster
of the model, i.e., certancy map, as well as the sim-
ulation results, which conclude the predicted future
land use/cover classification [14].

2.4. Land surface temperature
calculation

Calculating LST via the following workflow requires
a set of input parameters that can be computed with
the prepared satellite imagery. These parameters
include emissivity (ε), which was derived through
the “Normalized Difference Vegetation Index (NDVI)
threshold method” as a first step. Based on the NDVI
threshold method, emissivity can be derived for the 10
to 12 µm range [15, 16] which corresponds to Landsat
8, band 10 [15]. The mathematical base of the method
is represented in Equation (1) [15–19].

ε = εs for NDV I < NDV Imin

ε = εvPv + εs(1 − Pv) + dε

for NDV Imin ≤ NDV I ≤ NDV Imax

ε = εvPv + dε for NDV I > NDV Imax

(1)

In Equation (1), εs refers to the “soil” whereas εv

refers to the “vegetation” emissivities [15–19]. Equa-
tion (2) gives the “vegetation proportion” based on
minimum and maximum NDVI values [15–19].

Pv =
(

NDV I − NDV Imin

NDV Imax − NDV Imin

)2
(2)

with NDV Imin = 0.2 and NDV Imax = 0.5 [15–19].
In Equation (3) below [15, 16, 19], F refers to

“a shape factor” with a mean of 0.55 [19, 20].

dε = (1 − εs)(1 − Pv) Fεv (3)

The calculation of emissivity can be concluded via
Equation (4) [19].

ε = m Pv + n (4)

with input parameters as per Equation (5) and (6) [19].

m = εv − εs − (1 − εs) Fεv (5)

n = εs + (1 − εs) Fεv (6)

Based on [19], the emissivity values can be assumed
as εv = 0.99, εs = 0.97; and m = 0.004 and n = 0.986,
resulting in Equation (7) [19]. Note that Equation (7)
was proposed for Landsat 5 by [19] for the conditions
of NDV Imin ≤ NDV I ≤ NDV Imax and employed
in the present work as a simple approach.

ε = 0.004 Pv + 0.986 (7)

The land surface temperature (LST) calculations
were conducted following the workflow proposed
by [15] which modified the “Mono-Window algorithm
(MWA)” by [21] and adapted to Landsat 8 band
10 [15, 18]. This is given in Equation (8) below [15].

LST = [a10(1 − C10 − D10)
+(b10(1 − C10 − D10))T10 − D10Ta] /C10

(8)
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where, a10 = −62.7182 and b10 = 0.4339 were em-
ployed in the present study [15], whereas C10 and
D10 refer to the “internal parameters” (Equations (9)
and (10)) [15].

C10 = τ10ε10 (9)

D10 = (1 − τ10) [1 + (1 − ε10) τ10] , (10)

where τ10 is the “atmospheric transmittance” and ε10
refers to the “ground emissivity”. Both parameters
are stated for Landsat 8, Band 10 [15].

The “effective mean atmospheric temperature” (Ta)
can be estimated by the linear relation, based on the
“near-surface air temperature” (T0) and considering
the atmospheric states of the location [15, 18, 21]. As
per [15], T0 can be derived from local meteorological
stations and calculated by Equation (11) [15, 22].

T0,t = Tmin + (Tmax − Tmin) sin
(

π
t + tdl/2 − 12
tdl + 2tTmax

)
(11)

with Tmin and Tmax as “the daily minimum and max-
imum near surface air temperatures” [15], obtained
from weather stations in and around Vienna [23].

T0 was calculated and spatially interpolated for
the past and present scenarios. On the other hand,
brightness temperature, T10, can be calculated from
“band-specific thermal conversion constants” (K1 and
K2), “spectral radiance” (Lλ), and “radiance rescaling
factors” (Mi, Ai) [12, 24]. These values can be found
in the respective metadata file [12, 24]. The mathe-
matical definition for brightness temperature T10 and
spectral radiance Lλ are provided in Equations (12)
and (13) [12, 24].

T10 = K2

ln ((K1/Lλ) + 1) (12)

Lλ = MiQcal + Ai (13)

According to [15], atmospheric transmittance (τ10)
can be estimated – for the present study – according
to “mid-latitude summer” with a water vapor content
range of 1.6–4.4 g/cm2. This range was selected by
following the Equations (14) and (15) [15].

w = w(0)/Rw(0) (14)

w(0) = (H · E · A)/1000 (15)

In Equation (14), w(0) refers to the ground-level
water vapor content (g · cm−2) of the atmosphere, w
refers to the total water vapor content (g · cm−2) of
the atmospheric column between the ground and the
sensor, and finally, Rw(0) corresponds to the ratio
between the ground-level and total water vapor con-
tent [15]. In Equation (15), the term H refers to
the relative air humidity (%) observed at the sur-
face, E refers to the saturation mix ratio (g/kg) at
a certain air temperature between water vapor and
air, whereas for that temperature, A denotes the air
density (g/m3) [15].

The input parameters for E and A according to the
respective specific air temperatures were interpolated
for the weighted air temperature of 26.1 °C and 67 %
relative humidity for Vienna [25]. This resulted in E
= 22.05 and A = 1.178 [15]. Rw(0) resulted in 0.6834,
for mid-latitude summer [15].

2.5. Land surface temperature
projection

The results of the LST calculations were statistically
projected by using a linear regression line. The depen-
dent variable is LST; the independent variable is time.
For each of the approximately 460 000 observed pixels
per raster image, two observed LST output values are
available: past and present. Thus, the observed values
were extrapolated for predicting the LST of the future
scenario.

3. Results and Discussion
3.1. Land use/land cover
The results for the land use/cover (LULC) classifica-
tion of the past and present scenario showed 3.7 %
water area for both scenarios. Further, it resulted in
43.6 % and 47.2 % built-up area, 44.3 % and 43.9 %
vegetated area, as well as 8.4 % and 5.2 % bare soil,
respectively. The predicted scenario of 2055 resulted
in a distribution of 3.6 % for water surfaces, 51.4 %
built-up area, 40.5 % vegetated area, and 4.5 % bare
soil. Figure 1 includes the LULC resulting maps. As
Figure 1 indicates, the majority of the water surfaces
are distributed over the Danube River and its branches
and tributaries. It can be seen that the Danube River
is separated by several built-up area “stripes”, which
can be identified as bridges. For all three conditions,
the highest density of built-up area corresponds either
to the city center or areas of residential or commercial
use as well as traffic areas. Areas covered by forest
displayed the highest level of vegetation. Other green
areas, primarily covered with grass, were also identi-
fied within the city. The majority of bare soil areas
was identified in the city’s north and south parts. This
distribution is in line with the agricultural land use
in and around Vienna.

In comparison to 2013, the LULC classification of
2020 shows a slight densification of the built-up area
in the city center as well as in the outer districts of the
city. It further indicates a drastic decrease of the bare
soil areas, especially in the northern part of the city.
Both reference years showed a small amount of built-
up classified spots, evenly distributed over the forest
regions in the eastern and western parts of the city.

Regarding the future scenario, the water surface
remained mostly the same and the built-up area in-
creased significantly. The vegetated and bare soil
areas experienced a decrease of 7.8 % and 13.1 %, re-
spectively. The MOLUSCE algorithm “erased” the
sparsely distributed small built-up areas in the east-
ern and western forest areas of the city and overall
densified the vegetated and built-up areas.
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Figure 1. Land use/cover classification of Vienna.

∆T2020−2013 [K] ∆T2055−2020 [K]
Min. 0.88 4.35
Mean 0.36 1.78
Max. 0.11 2.44

Table 1. Summary of the LST differences between
2020 and 2013 as well as 2055 and 2020 scenarios.

3.2. Land surface temperature
Table 1 summarizes the temperature differences (∆T )
between present and past as well as future and present
scenarios for minimum, maximum and mean LSTs cal-
culated over the study area. Figure 2 further presents
the LST maps for the three scenarios pertaining to
past, present and future conditions.

As indicated in Figure 2, the lowest temperatures
for the past condition (i.e., 2013) can be obtained in
the forest regions in the eastern and western parts of
the city, as well as in the water area of the Danube
River. It can be concluded that, additionally to the
city center, the denser regions in the south show higher
temperatures compared to their surroundings (Fig-
ure 2).

As already mentioned, the LST for the future sce-
nario (2055) was not computed from the respective
classified LULC map but projected based on a statis-

tical (linear) extrapolation. The results indicate that
the city center as well as the southern and north/north-
eastern parts experience significant increase in temper-
ature over the course of the next 35 years. Not only
the built-up areas show temperature rise, but also the
eastern and western forest and grassland regions face
higher surface temperatures.

3.3. Results evaluation
The classification result generated by MOLUSCE
shows realistic values regarding the growing area of
impervious surfaces. It appears plausible that bare
soil areas, which in many cases are not only farmland
but also unused and barren land, are going to be used
for constructing new buildings and roadwork. How-
ever, it is possible that some inaccuracies occurred
in the course of classifying the LULC of the future
condition. For instance, MOLUSCE predicted sin-
gle classified water pixels evenly distributed over the
study site, where in reality no water bodies could be
identified. It can be thus recommended that in future
research efforts more spatial variables are included in
the process of the MOLUSCE classification for better
machine learning performance [14].

Although the results indicate a slight shift towards
higher temperatures over time, it is nevertheless essen-
tial to interpret them with caution: First, as the cloud
cover of the selected images were below 1 %, all pixels
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Figure 2. Land surface temperatures in Vienna.

within the images were considered as valid data points
and an additional screening for cloudiness and poten-
tial quality issues was not performed. Also, although
the satellite images were collected within a similar pe-
riod in September of the respective years, the weather
conditions might have been different. Therefore, it is
plausible that these factors might have had an impact
on the obtained outcomes. The calculated T0 for the
past and present scenario may also include irregulari-
ties due to the limited weather station data availability
for the past scenario (two stations for 2013, seven sta-
tions for 2020). This limited information may account
for inaccuracies in the later stages of the LST calcula-
tions. Moreover, the timing of Landsat 8 overpass in
Vienna (10:45 a.m. CET) is not ideal for evaluating
the urban thermal environment, as the thermal bands
tend to peak between midday and the early after-
noon [12]. In the present study, thermal data from
Landsat 8 was selected considering its suitable spatial
resolution [8]. Future studies may also employ readily
processed LST products from various satellite sen-
sors. One example may be the Aqua MODIS, which
provides data with a coarser spatial resolution [26]
but overpasses the study area around 12:30–13:30 p.m.
CET. A recent LST product from Landsat (Landsat
Level-2 Surface Temperature Science Product cour-
tesy of the U.S. Geological Survey) [27] can also be
an alternative that would shorten the workflow and
ameliorate the mentioned limitations.

4. Conclusion
The key objective of this contribution was to explore
an approach to predict land use/cover change and
LST maps based on satellite imagery [28]. It can
be seen from this effort that the utilization of satel-
lite data provides a promising opportunity to predict
future developments in the urban settings. The elab-
orated approach is not limited to the specific study
area (Vienna), but can be applied to any setting on
the urban scale, assuming that the required satellite
images are publicly available. Further analyses could
support the predictive assessment of future climatic
conditions. Such analyses could include diurnal and
seasonal variability in data acquisition. Utilizing data
from a larger number of weather stations may also
improve the LST calculations. These steps can facil-
itate the generalization of the approach pursued in
this paper.
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