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Abstract. Urban analyses demand simplifications that balance modelling level of detail and scope
broadness. Thus, classification by archetypes is a promising methodological approach. Such an approach
is common for energy studies but rarely applied for Life Cycle Assessment (LCA) purposes. When
archetypes are used in urban LCA, they generally result from previous studies for classification and
characterization according to parameters that directly affect the operational energy performance of
buildings. This paper tackles two research questions: i) Is it appropriate to aggregate building stocks
based on operational energy (OE) variables when life cycle impacts are investigated? ii) When integrated
LCA (OE + embodied impacts) is pursued, would variables describing both interests simultaneously
result in better representation than using operational energy-based clustering to predict embodied
impacts and vice versa? Thus, we aim to confirm that, combining variables that govern OE and
embodied impacts offers a better result than using OE to predict materials groupings, even if some
adherence is lost relatively to single-objective clustering. Clustering experiments were carried out for
the campus of the University of Campinas, Brazil. After unsupervised k-medoid (PAM) grouping,
the data were submitted to a supervised learning (neural networks) classification method. Generated
confusion matrices demonstrate how adherent the clustering is when considering one interest to predict
the other in three situations. Results indicate that an operational energy-driven archetype fails to
represent buildings from the embodied impacts viewpoint, and that merging operational energy and
embodied impact variables would better support integrated life cycle impact predictions.

Keywords: Archetypes, building stock aggregation, clustering, LCA, life cycle impacts, urban
modelling.

1. Introduction
Considering the growth projected for cities over the
next decades, achieving established energy use goals
become indispensable to mitigate urban environmen-
tal impacts. Estimating and understanding environ-
mental impacts, both operational and embodied, are
essential to assist in evaluating and monitoring per-
formance and to support strategic planning and the
formulation of energy and environmental policies for
sustainable development.

From the environmental charges induced by the
construction sector, studies are increasingly focusing
on simultaneously reducing Operational Energy (OE)
and embodied impacts [1, 2] as a decision-making
ais. To avoid that only impacts during the opera-
tional phase of buildings are considered [3], Life Cycle
Assessment (LCA) and energy simulations must be
integrated [4], to consider environmental burden over
a building’s entire life cycle.

Life cycle assessments at individual building scale
have already been extensively covered by literature [5].
However, the need to mitigate local and global impacts
to adapt to the limitations of available resources [6]
makes environmental assessment at the urban scale
increasingly necessary for sustainable planning. As-
sessments and simulations of the urban tissue are

even more complex as they face a series of challenges
imposed by the scale, complexity and intensity of
data needed to adequately describe urban layers and
components [7].

However, if we consider the city as a set of individ-
ual buildings, the high level of detail in the analysis
of segregated structures requires intensive use of fi-
nancial, temporal, technological and human resources.
Thus, to carry out these analyses, the complexity at
the urban scale allied to the lack of detailed infor-
mation about the built stock demands strategies to
simplify the built stock modelling, to balance level of
detail and scope broadness. Thus, archetype-based
approach, for instance, abstracts existing built stock
into a number of reference buildings. Construction
archetypes are representations (real sample or the-
oretical average) of groups of buildings aggregated
according to similar characteristics, defined according
to the scope of the study at hand. For combining
simplified modelling and extended scope, the classi-
fication by archetypes is commonly used in research
on new technologies [8] and energy efficiency policy
design [9]. So far, their use has increased yet been
focused on operational energy studies at the urban
scale, but building archetypes emerge as a promising
methodological approach to extend assessment scope
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beyond energy use.
The development of archetypes for energy studies

is based on data directly related to the operational
energy of buildings. According to the grouping crite-
rion, the representative buildings vary, reflecting the
extrapolation of characteristics to the other buildings
of the group that he represents and, consequently,
the consistency of the simulations for the urban scale.
Specific studies assessing the environmental impact of
built stock at various scales point out LCA studies ap-
plying the archetype approach use the same variables
as energy studies (use typology, construction typology,
year/period of construction), either because they aim
only at assessing operational impacts, or because they
are derived from energy studies, or simply because
of data availability [5]. However, an archetype for
energy modeling may not be suitable for analyzing
the flow of materials through the built stock [10], and
representative buildings of energy perspective are not
necessarily also representative from the materiality
viewpoint. So, for integrated simulations of environ-
mental assessments, the challenge of generating con-
struction archetypes that integrate information on
operational and embodied impacts arises.

This paper raises two research questions:
(i) Is it appropriate to aggregate building stocks
based on operational energy (OE) variables when
life cycle impacts are investigated?

(ii) When integrated life cycle (OE + embodied im-
pacts) assessment is pursued, would variables de-
scribing both interests simultaneously result in bet-
ter representation?

Thus, we aim to confirm that, at the representative
building identification stage of the building archetype
creation process, combining variables that govern OE
and embodied impacts offers a better result than using
OE to predict materials groupings and vice versa, even
if some adherence is lost relatively to single-objective
clustering.

2. Materials and methods
To achieve the above-mentioned goal, our method com-
prised two main steps. Firstly, based on a systematic
literature review on archetype development methods
for energy studies [11], the most used clustering pa-
rameters were identified according to the relevance
of each study (operational energy and LCA). Then,
cluster analyses to define archetypes were carried out
for a selected case study, considering three different
aggregation criteria: by energy-relevant variables; by
materiality-relevant variables; and by combining en-
ergy and materiality variables simultaneously.

The case study comprised the campus of the State
University of Campinas (UNICAMP), located in the
municipality of Campinas, São Paulo, Brazil. With
3 893 958 m2 total area and about 50 000 daily visi-
tors before the COVID19 pandemic, the study area

is comparable to a small town. The campus com-
prises 598 429 m2 of gross floor area (GFA) for mixed
uses, such as: administration, education (classrooms),
research (laboratories, workshops), health facilities
(hospitals, clinics), libraries, restaurants, cultural facil-
ities, sport facilities, general services, day care center,
schools, bank agencies, squares, public spaces and
more.

For simplification’s sake, buildings smaller than the
university standard building (i.e., < 500 m2 GFA) and
missing data points were cutoff, so that 226 buildings
remained in the final sample. Geometric and non-
geometric data for detailing the sample was surveyed
from several sources: GIS, field visits, image analysis,
data provided by administrative sectors, and results of
previous studies conducted by the research group [12].

From the operational energy standpoint, data col-
lection focused on the most used parameters for EO
clustering found in the literature:

(i) Year of Construction;
(ii) Construction Typology (isolated, semi-detached,

attached);
(iii) Use Typology (Administrative, Education, Hos-

pital, Restaurant, Bank, Laboratory, Staff, Library,
Museum, Gymnasium).

From the materiality perspective, aggregation fo-
cused on the structure (Reinforcing Concrete, Metallic,
Structural concrete masonry, Pre-fabricated Concrete,
Wood) and on the envelope (External Wall: Solid
ceramic brick, Structural concrete masonry, Ceramic
brick, Pre-fabricated Concrete, Wood; and Roofing:
Metal, Concrete slab, Fiber cement, Ceramic, Poly-
carbonate), which govern a substantial portion of
building impacts, as demonstrated by life cycle as-
sessment studies [1]. The Total Area and Number of
Floors are relevant inputs for both perspectives.

Based on a previous study on the application of
different unsupervised machine learning clustering
methods to the same neighborhood [7], the k-medoids
/ Partitioning Around Medoids (PAM) algorithm was
chosen to generate a preset number of 9 clusters. In k-
medoids algorithms, the groups are defined as subsets
of data points that are closest to their representative
elements – the medoids – which are real objects from
the dataset. The identified medoids serve as the basis
for developing archetypes to represent each building
group. The k-medoids method is more computation-
ally expensive (i.e. has longer processing time) than
gravity center calculation, but is suitable if the groups
are spherical, each medoid occupies a more central
position in the group and can handle any kind of
attribute (quantitative and qualitative).

Three unsupervised learning clustering scenarios
were performed: operational energy-based (OE),
materiality-based (LCA) and integrated clustering
(OE+LCA) (Table 1). After being processed to gen-
erate clusters for each scenario and identify respec-
tive medoids, the data were submitted to neural net-
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Scenario Parameters used for clustering Method Cluster nr.

1
OE-related parameters: Year of Construction,
Construction Typology, Use Typology, Total

Area and Number of Floors

2
Materiality-related parameters: Structure,
External Wall, Roof Tile, Total Area and

Number of Floors

3

Integrated clustering considering
simultaneously OE parameters and

materiality-related parameters: Year of
Construction, Construction Typology, Use

Typology, Structure, External Wall, Roof Tile,
Total Area and Number of Floors

Unsupervised machine
learning: K-medoids /
Partitioning Around

Medoids (PAM)

9

Table 1. Description of the clustering scenarios.

(a) . Ref: OE | Pred: embodied impact.
Accuracy = 45,8 %.

(b) . Ref: OE | Pred: integrated LC impacts.
Accuracy = 29.5 %

Figure 1. Confusion matrices relating operational energy (OE) parameters (reference) to predicted embodied (A)
and to integrated life cycle impacts (UBiM) (B) and respective model accuracies.

works, a supervised learning classification method,
using the CARET package in R language [13], and
the NNET method. The statistical procedures were
performed using R packages “tidyverse”, for data ma-
nipulation [14]; “ggpubr”, for graph elements [15];
“cluster”, for Partitioning Around Medoids (PAM)
algorithm – k-medoid [16]; “caret”, for neural net-
works (supervised learning) [17] and “factoextra”, for
generating cluster graphs [18].

Finally, confusion matrices were generated to
demonstrate how adherent the clustering is when con-
sidering one interest to predict the other in three
situations:

(i) considering energy grouping to predict materiality
aspects (Figure 1a);

(ii) considering energy to predict the integrated sce-
nario (OE+LCA) (Figure 1b), and

(iii) considering materiality aspects to predict the
integrated scenario (Figure 2).

Figure 2. Confusion matrix relating embodied im-
pact parameters (reference) to predicted integrated life
cycle impacts (UBiM). Model accuracy = 58.6 %.
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Figure 3. Clustering based on integrated life cycle (OE and embodied) impacts parameters (scenario 3). Numbers
indicate the buildings IDs.

Such matrices reveal how confused the model is be-
tween the predicted classes versus the actual outcomes,
and highlights instances in which one class is confused
for the other, providing insightful information regard-
ing a model’s accuracy. The matrix columns are the
“true” classes (reference), while the rows are “pre-
dicted” classes. The main diagonal shows the cases
where the model is correct.

3. Results and Discussion
3.1. Literature review and theoretical

deepening
Several efforts are being made to improve the process
of creating building archetypes. De Jagger et al. [19]
summarized the most common variables within 32
studies and Colleto and Silva [11] synthetized 21 publi-
cations that highlighted in the archetype development
process. Table 2 gathers the main parameters from
those two studies, and the relevance of each variable
for energy and embodied impact assessment.

Other parameters have been identified as not di-
rectly relevant for LCA, despite their high relevance
for energy:
• Building geometry:

▷ Building footprint: 4 occurrences in [19], 5 in [11];
▷ Compactness ratio: 1 occurrence in [19], 2 in [11];
▷ Heated volume or floor area: 2 occurrences in [19]

3 in [11];
▷ Total loss area: 2 occurrences in [19], 1 in [11];
▷ Density of internal thermal mass: 2 occurrences

in [19];
▷ Ground elevation: 1 case in [11];
▷ Roof type/shape: 1 case in [19], 1 in [11];
▷ Aspect ratio: 1 occurrence in [11];
▷ Envelope shape: 1 occurrence in [11];
▷ Floor loss area / Geometry / Loss-to-floor area

ratio: 1 occurrence in [19] each;

▷ Position of internal thermal mass: 1 occurrence
in [3];

▷ Total area to net area ratio: 1 occurrence in [11];
• Building occupancy:

▷ Occupancy: 3 occurrences in [19];
▷ Use of ground floor: 2 occurrences in [19];

• Thermal quality:
▷ U-value: 5 occurrences in [19], 3 in [11];
▷ Maintenance state: 3 occurrences in [19];
▷ Air tightness: 2 occurrences in [19];
▷ Construction method: 1 occurrence in [19];

• Building installations:
▷ Fuel typed used: 6 occurrences in [19], 3 in [11];
▷ HVAC system 6 occurrences in [10], 6 [11];
▷ DHW cylinder insulation thickness / Measured

energy demand: 2 occurrences in [11] each; and
• Building environment:

▷ Density of urban area / Exposure: 1 occurrence
in [19] each.

The parameter analysis in Table 2 corroborates [10]
regarding the unsuitability of an archetype for energy
modeling to support materials flow analyses, by reflect-
ing on the relationship of OE variables on materiality
data needed for embodied impact assessment. The
neural network classification and resulting confusion
matrices enabled to quantify such inadequacy for the
selected case study.

3.2. Sample clustering
The three unsupervised clustering scenarios resulted in
quite distinct results. For example, in the integrated
clustering scenario 3 (Figure 3), the 9 clusters (C1 –
C9) were identified in spherical groups, containing a
number of elements (n): C1 = 27 n, C2 = 29 n, C3
= 10 n, C4 = 34 n, C5 = 18 n, C6 = 21 n, C7 = 39 n,
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Parameters Relevance to embodied impacts Relevance to OE
Bu

ild
in

g
ge

om
et

ry

Construction typology
(attached, semi-detached,

independent/isolated,
continuous) (15) [19] (9) [11]

Low – Influences the building materials
proportions, but its relation to material types and

masses is limited
• Influences the quantities of materials (e.g.,

attached buildings share walls)

High – It defines important
characteristics for the building’s
operational energy performance

due to differences in solar incidence,
wind, thermal mass etc.

Façade-area ratio (1) [19]

Roof-area ratio (1) [19]

• Proportion of façade materials or roof materials
out of the total amount of building materials and

their respective impacts

Building height (3) [19] (5) [11]

Medium – Data support materials quantity
surveying

• Multiplier for material estimation in vertical
elements (walls, columns etc)

Window area (3) [19] (2) [11] • Supports window material and – jointly with
WWR – wall area estimates

Window-to-wall ratio (WWR)
(4) [19] (3) [11]

• Relative proportion of materials in windows and
walls and their respective impacts

Floor area (5) [11] • relevant for quantity surveying

Nr. of dwellings (buildings) /
rooms (residences) (2) [11]

• multiplier for the bill of materials of a building
floor;

• materials estimation of internal elements

Number of floors / stories
(5) [19] (7) [11]

High – Data support materials quantity surveying
• Multiplier for the bill of materials for

a multistorey building

Total area (8) [19] • Multiplier for the total bill of materials

High – Essential geometric data
for operational energy performance

calculations and simulations

Facade materials (1) [11] • Essential data to support the bill of quantities
calculations

High – Non-geometric data
essential for OE calculations/

simulations

Bu
ild

in
g

oc
cu

pa
nc

y

Use typology / Final use
(14) [19] (13) [11]

Low – Does not standardize building materials
used in construction. Can be compensated for by

correction factors that represent, for example,
important differences in building systems

High – equipment and use
intensity/schedule are proxies for
energy consumption patterns of

different end use typologies.

Bu
ild

in
g

ag
e Construction year/period

(20) [19] (19) [11]

Medium – Allows retrieving the probable
physical/material configuration from the

implemented building regulation. In places without
such regulations, it only points out building trends.

High – allows retrieving the
probable physical/material
configuration from building

regulations. If absent, utility for
inferring building trends for

archetypes development is limited.

Year of building’s last
renovation (1) [11]

High – Enables potential for retrofit/renovation
analyses and maintenance, which directly influence

a buildings’ materiality.

High – enables retrofit potential
analysis

Bu
ild

in
g

en
vi

ro
nm

en
t

Climatic zone (12) [19] (3) [11]

Location (3) [19]

High – Enables appropriate materials selection
according to raw material sources/transportation,

and energy matrix.

High – Non-geometric data
essential for calculations and

simulations

Table 2. Analysis of the main parameters used for building archetype development. Numbers within parentheses
indicate the occurrences in the reviewed literature.
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C8 = 48 n and C9 = 1 n. Cluster C9 contains only
one building (campus hospital), for its exceptional
total built area. For each cluster, the medoid (M1 =
ID1367; M2 = ID1076; M3 = ID0.12; M4 = ID301;
M5 = ID0.46; M6 = ID396; M7 = ID99; M8 = ID400;
M9 = ID518) is the representative building to support
subsequent archetype development.

In confusion matrices (Figures 1 and 2), the columns
are the “true” classes (reference), while the rows are
“predicted” classes (in our case, building clusters). As
the main diagonal shows the cases for which the model
is correct, the ideal model shows a highly populated
main diagonal, which sums up the highest sample
percentage (in our case, 226 buildings). All other cells
indicate prediction errors, so the “dirtiest” a confusion
matrix is, the lowest its accuracy.

Despite the accuracy achieved, applying OE pa-
rameters to predict materiality grouping is the least
suitable: due to the lack of data correlations, few
clusters had positive results and most of them were
not even statistically processed (indicated as “N/A”
in Figure 1a). Contrastingly, the model’s accuracy
roughly doubles if life cycle aspects prediction is based
on materiality (Figure 2) instead of in OE aspects
(Figure 1b): 133 of the 226 sampled buildings would be
correctly grouped, and clusters C8 (41/48 buildings)
and C7 (29/39 buildings) were the most accurately
predicted. This reinforces our assumption that, re-
gardless of its often use, using energy-based clustering
and then performing LCA for embodied impacts es-
timation of built stocks is not recommendable, and
variables simultaneously representing both OE and
materiality interests would result in better grouping
than by using energy clustering for material grouping
prediction and vice versa.

4. Conclusions
Balancing the most appropriate parameters for cluster-
ing vs. data collection and computational cost is a ma-
jor challenge for creating representative archetypes to
support built stock aggregation modelling. Despite
improvement opportunities, the exploratory simula-
tions shown support the assumption that an integrated
clustering step combining operational and embodied
impacts variables offers better outcomes than single-
objective clustering followed by complementary simu-
lation or LCA of representative buildings. Studies are
underway to advance in the archetype development
process and data simulation for predicting benchmarks
for some use typologies and should be generally repro-
ducible for varied contexts. Outcomes are expected to
guide existing built stock characterization and future
data collection.
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