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Abstract. Excessive vertical acceleration of ballastless railway bridges subjected to vibrations induced
by passing trains is one of the governing design criteria for bridges in high-speed lines. However, to the
authors’ knowledge, the corresponding design limit is not based on a solid theoretical or experimental
background. Moreover, the traditionally applied safety factor also suffers from these concerns. Therefore,
in the present study, a crude probabilistic approach is adopted to evaluate the consistency and reliability
of this safety factor. For this purpose, deterministically designed bridges (using conventional methods)
with short to medium spans are considered. Then, their reliability is evaluated using simulation-based
techniques and extreme value theory, i.e., tail approximation. Then, the existing safety factor is
calculated to evaluate the consistency of the current approaches, and possible new values are proposed
based on the desired target reliabilities.
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1. Introduction
The increase in operating speed of trains in recent
decades leads to excessive vibration of infrastructure,
especially bridges, which raises new safety concerns.
Such vibrations can affect the structural performance
of bridges, jeopardize the safe passage of trains on
bridges (denoted here as running safety), and disrupt
passenger comfort.

Ensuring running safety requires preventing loss
of contact between wheels and rail, the occurrence
of which increases the risk of train derailment. This
phenomenon can be formulated as an unloading ratio,
which reads as Eq.(1) [1].

∆P
Pst

= Pst − Pmin,dyn

Pst
(1)

where Pst is the static vertical wheel load and Pmin,dyn
is the minimum dynamic vertical wheel load. Theo-
retically, contact loss occurs at a unloading ratio of 1,
but [1] limits this to 0.6.

Considering the formulation presented, the study
of the running safety problem must take into account
various subsystems, namely the passing train, the
rail, the track, the bridge components, the bound-
ary conditions, and the interaction between all these
subsystems. The train and the track are coupled to
each other by the interactive wheel-rail force, which
is transmitted to the bridge through the track. It is
worth noting that there are a variety of track types
in the world, which can generally be categorized into
two classes: Ballasted and ballastless (also referred to
as Non-Ballasted or Slab Track). For the first type,
a granular material is formed between the sleepers
and the bridge deck. For the latter, however, there

are different construction methods, about which the
interested reader can find a detailed overview in [2],
but in general they consist of two concrete layers and
a bituminous mixture in between.

Clearly, the use of such complicated computational
models requires a high level of expertise and involves
expensive computational costs. Therefore, for prac-
tical purposes, moving load models are often used,
which are computationally very efficient. In addition,
it has been shown that such reduced models can lead
to acceptably accurate answers when the train weight
is much smaller than the bridge (which seems to be
the case for passenger trains) and also in cases where
the study of the dynamic behavior of trains is not
sought [3]. This approach cannot model the contact
loss between wheels and rail. Therefore, the design
rules implicitly control the ride safety criterion by
instead limiting the vertical acceleration of the bridge
deck [4] or its deflection [5].

This assumes that contact loss occurs at accelera-
tions greater than 1.0 g; however, the authors found
no theoretical or experimental justification for this
assumption. The relationship between this criterion
and the unloading ratio (wheel-rail contact loss) was
previously studied using train-track-bridge interaction
(TTBI) models, where it was found that the acceler-
ation criterion almost always dominates the design
[6, 7].

In addition, an arbitrary safety factor of 2 is ap-
plied to the above threshold. Therefore, the maximum
allowable vertical acceleration of ballastless railroad
bridges should be limited to 5 m/s2. This safety factor
is borrowed from the phenomenon of ballast instability
[4]; however, it should be emphasized that the consis-
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tency and reliability of this safety factor is questioned
even for bridges with ballast [8]. Considering this sit-
uation, a rough probabilistic approach is taken in this
article to evaluate the reliability of the conventional
safety factor for ballastless railroad bridges.

The rest of this article is divided into the review
of the applied reliability assessment method in 2, the
description of the constructed computational models
in 3, the formulation of the reliability problem in 4,
and the estimation of the corresponding safety factors
in 5. The article concludes with a summary of the
main results.

2. Reliability Assessment Using
Tail Modelling

The probability of failure (pf ) is generally estimated
by calculating the presented multiple integral in Eq.
(2):

pf = P (g(X) ≤ 0) =
∫

D
fX(x)dx (2)

where X ∈ Rm is the vector of basic random variables,
fX(x) is their joint distribution probability, and g(•)
is the limit state function. The latter is basically a
decision boundary separating the failure domain (D)
from the safe region. These regions are distinguished
based on the sign of the limit state function, i.e., fail-
ure occurs when g(X) = R − S ≤ 0; where R is the
capacity corresponding to the failure mode and S is
the demand (e.g., load, displacement, stress, or strain).
At this point, it should be mentioned that reformulat-
ing the reliability problem as a ratio between action
and corresponding capacity, i.e., g(X) = S/R instead
of subtracting them, changes the failure domain to
the region where g(X) ≥ 1.

The calculation of this integral is usually not
tractable in real applications. This is because the joint
probability distribution of the basic random variables
and the failure domain are generally not available.
Therefore, a variety of methods have been developed
to overcome these problems. The best known of these
are crude Monte-Carlo simulation (MC) and first and
second order reliability methods (FORM /SORM).

The crude MC gives the most accurate estimate
of the failure probability, making it the most widely
applicable approach. It can be expressed as Eq. (3):

pf =
∫

I[g(X) ≤ 0]fX(x)dx = E
[
I[g(X) ≤ 0]

]
≈ 1
N

N∑
i=1

I[g(X̂i) ≤ 0] (3)

where I(•) is an indicator function equal to one if
true and zero otherwise. Also, N is the number of
realizations (samples) of the basic random variables.
Although it is generally applicable, crude MC is not an
efficient approach for the majority of reliability prob-
lems. This is because its accuracy (represented by the

coefficient of variation of the estimated probability of
failure) is inversely proportional to the square root of
the number of samples (∝ N−1/2) and also to the or-
der of the probability of failure. Considering that the
failure probability in structural engineering is usually
in the range of 10−4 − 10−3, performing MC incurs
significant (and usually unaffordable) computational
costs for reliability assessment tasks.

Moreover, FORM is basically an optimization-based
solution that finds the smallest distance between the
point with the largest likelihood on the transformed
joint probability distribution in the standard Normal
space and the most probable point (MPP). The latter
should be on the limit state function approximated by
the first Taylor expansion around the MPP.Therefore,
FORM reads as Eq. (4).

β = arg min
t

1
2tT t

s.t. G(t) = 0
(4)

where β = −Φ−1(pf ) is the safety index, t = T (X) is
the transformed basic random variables transformed
into the standard Normal space, and G(•) is the refor-
mulated limit state function based on the transformed
variables. It is worth noting that basic random vari-
ables can be transformed into standard Normal space,
for example, using the Nataf transformation [9]. An
application of FORM to evaluate the running safety of
ballasted high-speed railway bridges is presented in [8].
As mentioned earlier, this method is computationally
efficient but may not be accurate enough for highly
nonlinear limit- state functions [10, 11].

Considering the discussed issues regarding the effi-
ciency and accuracy of classical reliability assessment
techniques, they were later improved by the intro-
duction of more advanced methods. These include
Important Sampling (IS) [10, 12], Subset Simulation
(SS) [13], Surrogate-based approaches [14, 15], and
Tail Estimation (approximation). The explanation
of these methods is beyond the scope of this article;
therefore, the interested reader is referred to the ref-
erences provided. Therefore, only the latter approach
used in this study is explained here.

The failure event is usually a rare event among
all possible scenarios of a designed system; therefore,
the failure probability is located at the tails of the
cumulative distribution function (CDF) of the limit-
state function. Thus, the basic idea of tail modeling
is to approximate the tail of the true distribution by
another distribution with an equivalent tail by running
a limited number of simulations. The tail equivalence
property reads as [16]:

lim
g(x)→∞

1 − T [g(X)]
1 − F [g(X)] = 1 (5)

where F [g(x)] and T [g(x)] are CDF of the limit state
function and that of the tail model, respectively. This
equivalence holds for the tails of the true CDF (upper
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or lower ones); therefore, a threshold (denoted here
as u) should be chosen to fit the tail model for values
larger (or smaller) than this. This results in the fitted
tail being formulated based on a transformed variable
called the exceedance (z = x − u). The concept
of tail approximation, threshold, and exceedance is
shown schematically in Figure 1. It should be noted
here that the limit-state function in Figure 1 has been
reformulated to show the region of failure at the upper
end for illustrative purposes.

0
g(x)

F[
g(

x)
]

Safe Failure

z = g(x)-u

CDF of g(x)
Fitted Tail

u

Figure 1. Concept of tail modelling.

The most widely used tail model is the generalized
Pareto distribution (GPD), given as Eq.(6). In addi-
tion, the sigmoid (Eq.(7)) and exponential functions
have been used for reliability assessment of high-speed
railway bridges in [17], where it was concluded that
the sigmoid function can lead to a more accurate
estimate of the probability of failure.

TZ(z) =

1 −
〈

1 + kz/ψ

〉−1/k

+
k ̸= 0

1 − exp(−z/ψ) k = 0
(6)

TZ(z) = c1 + c2[
1 + exp (z/c3)

]c4 (7)

where k is the shape parameter of GPD, ψ its scale pa-
rameter, ci, i = 1, ..., 4 are constants of the sigmoid
function, and ⟨A⟩+ = max (0, A). These parameters
can be calculated using either the maximum likeli-
hood method (MLE) or the least squares method
(regression).

In [18], it was shown that using a single-tail model
does not guarantee that the failure probability is al-
ways estimated accurately. Therefore, they proposed
to calculate the probability of failure based on a linear
regression on the safety index of the top 10% of the
data (Beta- LT), a quadratic polynomial fit to the
top 50% of the safety index data (Beta- QH), and

a quadratic fit to the logarithmic transformation of
the safety index (LnBeta- QT) [18]. Then they pro-
posed to use the median value of the estimated failure
probability from the discussed approaches, showing
for benchmark problems that it is almost always at
least the second best estimate. Therefore, the same
approach is followed in this study, using the sigmoid
function as the tail model as well.

In addition to the assigned parameters of the tail
model, its performance also depends on the thresh-
old considered. In [19], it was proposed to consider
1.5

√
N (where N is the total number of data) to fit the

tail model (hereafter referred to as Hasofer’s method).
Similarly, [20] suggests using 0.02N and 0.1N for cases
of 50 < N < 500 and 500 < N < 1000, respectively
(hereafter referred to as Boos’ method). Furthermore,
in [21], they discussed that thresholds close to the
central data cause the fitted tail to suffer from high
bias, while very large thresholds can lead to tail ap-
proximations with high variance ( trade-off between
bias and variance). In this context, they proposed to
select the optimal threshold by calculating the mean
square error (MSE) of the estimated safety index (β)
at all thresholds considered. The MSE can be calcu-
lated as the sum of the squared bias and the variance
of the estimated safety index at a given threshold (see
Eq. (8)). Given the definition of bias (see Eq.(9))
and variance (see Eq.(10)), the expected value of the
estimated safety index is needed. Therefore, they pro-
posed to find the expected value of the safety index
using the bootstrap method. An illustrative example
of the latter approach is shown in Figure 2, where
the horizontal axis represents the threshold value as
the quantile of all data. It is worth noting that for
illustration purposes, the well-known Ishigami func-
tion is used in the form of Eq. (11) to represent the
limit state function [22]. Threshold selection using
this approach is more robust than other methods, al-
though it increases the computational cost. Since this
additional computational cost is only at the level of
post-processing existing data, it would be affordable.

MSE(β|u) = Bias2(β|u) + Var(β|u) (8)

Bias(β|u) = E[β̂(u)] − β (9)

Var(β|u) = E
[
(β̂(u) − E[β̂(u)])2] (10)

f(x) = 16.5 −
[

sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1)

]
xi ∼ U(−π, π) i = 1, 2, 3

(11)
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Figure 2. Threshold selection using MSE estimator.

3. Computational Model
As mentioned earlier, this study is concerned with
the running safety of ballastless high-speed railway
bridges. This problem consists of four subsystems,
namely the passing train, the rail, the slab track and
the bridge, and their interactions. The used 2D com-
putational model of the simply supported bridges is
shown in Figure 3.

The rail, slab track and bridge are modeled as Euler-
Bernoulli beams. In addition, the rail pads between
the rail and the slab track are modeled using lumped
springs and dashpots, while the sub grades are ac-
counted for by distributed springs and dashpots. The
structure of the train (i.e., the corresponding degrees
of freedom) is neglected, resulting in the train be-
ing modeled as a series of moving loads. The trains
under consideration share a bogie between two ad-
jacent coaches (known as articulated trains) and it
is assumed that the axle loads are identical for each
realization. Since the loads move along the rail, the
components of the load vector that do not relate to
the rail are zero.

Therefore, the equation of motion can be expressed
as Eq. (12) using partitioned matrices. The inter-
ested reader can find detailed information about the
computational model in [6, 23].Mr 0 0

0 Ms 0
0 0 Mb

 
Ÿr

Ÿs

Ÿb

+

 Cr Crs 0
Csr Cs Csb

0 Cbs Cb

 
Ẏr

Ẏs

Ẏb


+

 Kr Krs 0
Ksr Ks Ksb

0 Kbs Kb

 Yr

Ys

Yb

 =

Fr

0
0

 (12)

where M, C, and K represent the mass, damping,
and stiffness matrices of each subsystem, respectively.
The indices r, s, and b represent rail, slab track, and
bridge, respectively. Each subsystem is represented by
diagonal terms and the off-diagonal partitioned ma-
trices couple the subsystems (rail to slab and slab to
bridge). The rail to slab coupling matrices include the

lumped spring and the dashpots of the railpads. Sim-
ilarly, the rail to bridge coupling matrices include the
distributed spring and the dashpots of the subgrade.
In addition, Y is the vector of subsystem displace-
ments and Fr is the force vector. Note that the force
vector is time dependent and must be reconstructed
at each step based on the position of the train.

Next, the equilibrium equations of motion are solved
using the Hilber-Hughes-Taylor (HHT) direct time in-
tegration method. Then, the calculated responses are
filtered using a low-pass filter whose cut-off frequency
corresponds to the minimum of the third vibration
frequency of the bridge or 30 Hz [24].

The constructed computational model cannot cap-
ture the effect of unevenness in the rail geometry
(known as rail irregularities) on the responses of the
bridge. Rail irregularities are random in nature and
can be modeled by a stationary Gaussian process to
generate different rail profiles [25]. Then they are
treated as an additional force term using the wheel-
rail contact stiffness [23]. In [26], it was shown that
rail irregularities can significantly amplify the maxi-
mum vertical accelerations of the bridge. Therefore,
they proposed random amplification factors as an al-
ternative method for modeling rail irregularities. A
similar approach is taken by conventional codes, but
they consider it as a deterministic variable. This cod-
ified amplification factor is considered here; it reads
as Eq.(13) [24] for the rails with good quality.

RIA =

1 + α

200

[
56e−(L/10)2

+ 50(Lf1

80 − 1)e−(L/20)2
] (13)

where α = min (v/22, 1), v is the train speed, L is
the length of the bridge span, and f1 is the fundamen-
tal frequency of the bridge. It should be noted that
the use of RIA does not necessarily lead to conserva-
tive response predictions [26]; however, this possible
drawback is neglected in this study.

Since the main objective of the article is to evalu-
ate the consistency of the conventional safety factor,
the speed of passing trains is limited to the allowable
operating range, which is assumed to be 240 km/h
here. This is achieved by increasing the operating
speed of high-speed trains on the Swedish network
by 20%, which is about 200 km/h [27]. Moreover,
only the maximum response of the bridge is needed to
estimate the corresponding failure probability. There-
fore, the maximum vertical acceleration of the deck
is calculated only for critical speeds (denoted here as
vcr). The critical speed corresponds to the situation
where the excitation frequency of the passing train
coincides with the frequency of the bridge (resonance
phenomenon); this is obtained from Eq.(14) [28]. It
should be noted that the maximum speed is taken
into account for the cases where the critical speed was
greater than the allowable speed.
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Figure 3. 2D computational model of the ballastless railway bridge.

vcr = Dfj

i
j = 1, 2, 3, ...

i = 1, 2, 3, ..., 1/2, 1/3, 1/4, ... (14)

where, D is the characteristic length of the coach and
fj is the jth frequency of the bridge.

4. Reliability Problem
As mentioned earlier, the running safety is implic-
itly controlled by limiting the vertical acceleration of
the bridge deck. Therefore, the limit state function
is formulated as Eq. (15), where failure occurs for
g(X) ≥ 1.

g(X) = amax(X)(1 + χM )
alim

(15)

where amax(X) is the maximum vertical acceleration
of the bridge deck for X realization of the basic ran-
dom variables, alim is the maximum allowable vertical
acceleration of the bridge deck (here considered as 10
m/s2), and χM is the model uncertainty.

The basic random variables considered are listed in
Table 1, with those related to the bridge and train
properties taken from [29–31]. Note that the target
bridges have spans of 10 m, 20 m, and 30 m, and the
values given in Table 1 are in the same order. The
mean values of the cross-sectional moment of inertia
and mass per length correspond to the minimum al-
lowable values satisfying conventional deterministic
design methods [29]. The nominal values of the other
parameters are taken from [6, 7]; the assigned distri-
bution function and standard deviations are based on
recommendations from [32] and the authors’ engineer-
ing judgment.

5. Safety Factor Estimation
The objective of the article is achieved by first calculat-
ing the maximum vertical acceleration of the bridges
for passing trains with critical speeds. In this con-
text, the sensitivity of the estimated safety indices is

first evaluated with respect to the number of samples
considered (see Figure. 4). It should be emphasized
here that the analyzes for this task were performed
only for trains with a speed of 240 km/h. As can be
seen, the method almost converges when the number
of samples exceeds 10,000; however, 20,000 samples
are considered in this study.

0 1 2 3
# Sample 104

3

3.2

3.4

3.6

3.8

4

Figure 4. Sensitivity to the number of samples.

Then, the statistical parameters (i.e., mean and
standard deviation) of demand are estimated by cal-
culating the 99% quantile of these parameters using
the bootstrap method. Then, the system’s probability
of failure is calculated using the tail approximation
method. This is done by calculating the median of
the probabilities of failure resulting from the methods
discussed. These methods include fitting GPD by the
maximum likelihood method using the Hasofer, Boos,
and minimum MSE thresholds, fitting the sigmoid
function by the regression method using the minimum
MSE threshold, Beta- LT, Beta- QH, and LnBeta-
QT. Some examples of such approaches obtained for
the 30 m span bridges are shown in Figure 5.

Then, Eq. (16) is used to estimate the existing
safety factor of the conventionally designed bridges.
This equation is developed in [10] for linear limit-state
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Variable Dist.∗ Mean/Min./Scale Std/Max./Shape Truncation
Bridge

Ib (m4) - Moment of inertia N [0.4, 1.5, 5.9] 0.01µIb
-

mb (kg/m) - Mass per length N [19000, 29000, 39000] 0.03µmb
-

ξb (%)† - Damping ratio LN max(1.5 + 0.07(20 − L), 1.5) 0.3 -
Eb (GPa) - Modulus of elasticity N 29.7 3.56 -

Train
D (m) - Coach length U 17 28 -
dBA (m) - Axle distance U 2 3.5 -
p (kN) - Axle load W 194.93 9.14 ≤ 120

Rail
Ir (m4) - Moment of inertia N 2 × 61.1e-6 0.01µIr -
mr (kg/m) - Mass per length N 7850 × 15.38e-3 0.03µmr

-
Er (GPa) - Modulus of elasticity N 205 5 -

Slab Track
ts (m) - Thickness N 0.3 0.01 -
bs (m) - Width N 2.5 0.005 -

ρs (kg/m3) - Mass density N 2500 100 -
ξs (%)† - Material damping LN 2 0.3 -

Rail pad
krp (MN/m) - Stiffness N 2 × 22.5 0.01µkrp -
ξrp (%)† - Damping ratio LN 10 0.3 -

Slab Subgrade
ksg (MN/m3) - Stiffness N 100 0.2µkrp -
ξsg (%)† - Damping ratio LN 2 0.3 -

Model Uncertainty
χM (-) - Model uncertainty N 0 0.086 -

∗ N , LN , U and W indicate normal, lognormal, uniform and Weibull distributions, respectively.
† Parameters are in physical space.

Table 1. Considered basic random variables.

functions using the separation function to linearize its
standard deviation.

γ = 1 + θβCCoVa

1 + kaCoVa
(16)

where θ = 0.75 ± 0.06 for 1/3 < σ/µ < 3 is the sepa-
ration constant linearizing the standard deviation of
the linear limit state function, i.e. σZ = (σ2

R + σ2
S)1/2

changes to σZ ≈ θ(σR + σS) for limit state functions
in the form of G(X) = R− S. Also, βC is the safety
index corresponding to the limit state under consid-
eration, CoVa is the coefficient of variation of the
demand (here the vertical acceleration of the bridge
deck), and ka is the standardized characteristic value
(95% quantile - denoted here as ak) of the demand,
which reads as ka = (ak − µa)/σa.

Next, the new safety factor is calculated using
the same data, replacing the existing safety index
with a target safety index, which is βt = 3.719 (i.e.,
pf,t = 10−4). The calculated values are given in
Table 2; where γexist and γnew indicate an approxima-
tion of the safety factor based on conventional design

methodology and the potential values to be adopted
in the future, respectively. It should be emphasized
here that minimum allowable mass values have been
assigned to the bridges considered; therefore, the val-
ues presented represent an approximate lower bound
of the possible safety indices.

As can be seen, the conventional design method does
not result in a consistent safety factor; although an
identical factor was used for the design of all bridges.
This conclusion underscores the point that safety fac-
tors in the future should probably be a function of
span length, rather than being constant.

In addition, bridges with shorter spans are more
susceptible to higher accelerations, resulting in a lower
safety factor compared to longer bridges. Considering
the safety factor obtained for bridges with a span
of 20 m, it is even possible that some scenarios are
neoconservative. On the contrary, criteria other than
running safety may dominate the design of bridges
with larger spans, e.g., displacement-related criteria
such as passenger comfort [30]. Therefore, a very
large safety factor is estimated as a consequence of
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Figure 5. Example of fitted tail models for bridges with span length of 30 m.

L (m) γexist γnew

10 2.91 1.18
20 1.29 1.37
30 6.46 1.17

Table 2. Existing and proposed safety factor for run-
ning safety of high-speed ballastless railway bridges.

a very small probability of failure. Considering this,
the reliability of the estimated existing safety factor
for bridges with a span of 30 m is questionable.

On the other hand, the proposed new values for
the safety factor appear to be more consistent with
a conservative value of about 1.4. However, as men-
tioned above, the use of a constant safety factor for
all bridges with different spans needs to be revised.

6. Conclusions
In this study, the reliability of the conventional safety
factor for the running safety of ballastless high-speed
railway bridges was investigated. It was found that
despite the use of a constant safety factor for bridges
with different spans, the resulting designs may not
have consistent safety factors. Therefore, it seems nec-
essary to revise the current safety factor by proposing
a set of new factors that depend on the span length
of the bridge. In this regard, rough proposals based
on an arbitrary target safety level were recommended,
showing the potential of using smaller values in future
design regulations.
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