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Abstract.
The acquisition and appropriate processing of relevant information about the considered system

remains a major challenge in assessment of existing structures. Both the values and the validity
of computed results such as failure probabilities essentially depend on the quantity and quality of
the incorporated knowledge. One source of information are onsite measurements of structural or
material characteristics to be modeled as basic variables in reliability assessment. The explicit use
of (quantitative) measurement results in assessment requires the quantification of the quality of the
measured information, i.e., the uncertainty associated with the information acquisition and processing.
This uncertainty can be referred to as measurement uncertainty. Another crucial aspect is to ensure
the comparability of the measurement results.This contribution attempts to outline the necessity
and the advantages of measurement uncertainty calculations in modeling of measurement data-based
random variables to be included in reliability assessment. It is shown, how measured data representing
time-invariant characteristics, in this case non-destructively measured inner geometrical dimensions,
can be transferred into measurement results that are both comparable and quality-evaluated. The
calculations are based on the rules provided in the guide to the expression of uncertainty in measurement
(GUM). The GUM-framework is internationally accepted in metrology and can serve as starting point
for the appropriate processing of measured data to be used in assessment. In conclusion, the effects
of incorporating the non-destructively measured data into reliability analysis are presented using a
prestressed concrete bridge as case-study.

Keywords: Existing structures, FORM, measurement uncertainty, nondestructive testing, reliability
assessment.

1. Introduction
Considering that absolute certainty is practically not
attainable and further not worth striving for, since
its theoretical achievement implies the consumption
(or dissipation, respectively) of infinite resources [1],
every decision is associated with a higher or smaller de-
gree of uncertainty. This also includes decisions about
the reliability of existing structures. Uncertainties in
reliability assessment may be characterized process
inherent (such as future wind and seismic loading) and
arise generally from the persistently existing lack of
knowledge regarding the considered system, which is
described by the characteristics, exposition, behavior,
condition, etc. of the structure. Accordingly, it is
vitally important to find a computation model that
appropriately represents the structural system and
its environment, and, for this purpose, to gather and
treat relevant, additional information in a suitable way.
This serves to sufficiently fill the knowledge gap re-
garding the system of interest and to increase the level
of approximation of a model used for the assessment.

In most cases many types of information are avail-
able or at least obtainable that can (and, where appro-
priate, should) be utilized in reliability and condition
assessment of existing structures to reduce uncertain-
ties and to identify both biases and errors in models
and assumptions. These include information from
design that can be extracted from reports or draw-
ings as well as information from field experience and
observed data, respectively [2]. The evaluation of
the condition of individual information to be used
in assessment is crucial, amongst others because the
inclusion of imprecise or even incorrect (in the sense of
biased) information may lead to unfavorable decisions
on reliability that may have serious consequences. It
should be noted that the various conceivable sources
of information provide diversely structured data that
may not necessarily be treated in the same way.

The significance of on-site observations has been
shown, e.g., in studies on the appreciation of advanced
measurement techniques in condition assessment [3]
and on the use of monitoring-data in reliability anal-
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ysis [4, 5]. The refinement of computation models
by including additional information facilitates the
targeted planning of actions such as use restrictions,
maintenance, and reconstruction, as well as improved
life time predictions, the optimization of resource con-
sumption and overall more realistic assessment results
that can lead to better decisions. Whereas measure-
ments can be seen as a tool to generate knowledge, it
should be kept in mind that observed data in most
cases only represent a quantity of interest, e.g., a
physical characteristic, with uncertainty. This uncer-
tainty can be understood as a measure to quantify the
quality of the measurement result and its accuracy, re-
spectively, shall be expressed in a suitable, practically
applicable way and has to be principally considered
when using measured information in assessment, see i.
a. [2, 6].

This paper attempts to outline the necessity and
the advantages of measurement uncertainty calcula-
tions in measured data-based modeling of random
variables to be used as basic variables in reliability
assessment. Stochastic processes and random fields
are delimited. The rules provided in the Guide to the
Expression of Uncertainty in Measurement (GUM)
[7], which are suitable for the calculation of measure-
ment uncertainty in many cases in metrology and
at the same time computationally simple, are sum-
marized in order to shed light on an internationally
accepted approach. This concept could be applied
for the comparable modeling of uncertainty that is
related to information acquisition and processing in
measuring data-supported reliability assessment. How
measurement results can then be incorporated into a
time-invariant component reliability analysis and what
effects this can have on reliability is demonstrated us-
ing inner geometrical dimensions, which have been
measured non-destructively on a prestressed concrete
bridge in northern Germany.

2. Necessity and calculation of
measurement uncertainties

The set of basic variables included in a reliability
analysis and their mathematical relationship form the
"entire input information" to the model used for an
assessment [8]. Fundamental challenges in stochas-
tic modeling of basic variables to be used to com-
pute small probabilities such as failure probabilities in
many engineering problems include the treatment of
model uncertainties, the tail-sensitivity problem, and
the quantification of correlation [9]. To address, for
instance, the tail-sensitivity problem, [8] and others
recommend the standardization of types of distribu-
tion functions of basic variables for certain groups of
structural problems. In addition, all relevant types of
uncertainty should be covered in a stochastic model
of a basic variable [8]. Frequently mentioned types
are the intrinsic physical or mechanical uncertainty,
the statistical uncertainty, the model uncertainty [8],
and furthermore the measurement uncertainty [2], on

which this paper focuses. This uncertainty describes
the precision of measured information provided that
systematic errors have been corrected appropriately
and serves to express the measurement result in a
comparable way. This is significant in reliability anal-
ysis in that calculated values need to be comparable
to certain target values.

Measurement uncertainty can be defined as a param-
eter to quantify the dispersion of the values assigned to
the quantity to be measured (the measurand) based on
the incorporated information [10]. "From the metro-
logical point of view, a measured value to which no
measurement uncertainty has been assigned is useless.
The calculation of measurement uncertainty serves to
establish confidence in measurement, to ensure the
comparability of measurement results and to express
the quality, that is, trueness and precision, of the
information measured about a characteristic. In the
context of modeling basic variables to be used in assess-
ment, two central requirements on stochastic models
can be met by adequate measurement uncertainty con-
siderations: verifiability and comparability. Moreover,
a measurement result is required to be unambigu-
ously expressed and transparently documented. Thus,
the objectivity is assured in the sense that the calcu-
lated results as well as the models, input quantities,
and assumptions underlying the measurement uncer-
tainty considerations are deniable." [11]. "A good or
rather useful measured data-based probabilistic model
should cover the uncertainty associated with informa-
tion acquisition and processing besides the uncertainty
quantifying the inherent natural variability of the con-
sidered characteristic. The measurement uncertainty
describes the limits of an interval containing the (gen-
erally unknown) true value of the measurand with a
certain probability, and is epistemic, provided that an
alternative exists to obtain the information (different
testing methods, etc.). A stochastic model that has
been created based on observations on site and that
does not cover the uncertainty to be attributed to
the information acquisition and processing appears to
be equally useless as a measurement value to which
no measurement uncertainty has been attributed to."
[11].

In the following, it is shown how measurement un-
certainties can be calculated according to the GUM.
The explanations refer to the main document [7]. The
application of Monte Carlo simulation to the propaga-
tion of distributions and the computation of multiple
output quantities is treated in the supplements [12, 13].
The basic idea is to find a model of the measurement
consisting of different input quantities Xi that may be
either necessary to compute the measurement result or
influence the outcome of the experiments in most cases
unfavorably (and hence contribute to measurement
uncertainty unless they are modeled deterministically).
The functional relationship of these input quantities
can be often expressed in form of an explicit model
equation and is used to determine the output quantity
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Y , that is, the quantity of interest (the measurand):

Y = f(Xi) (1)

The input quantities Xi have to be identified using,
e.g., the knowledge about the measuring process, and
evaluated with respect to their individual relevance.

Example: A considerable number of planners and
owners requested the nondestructive localization of the
reinforcement and tendons inside of concrete compo-
nents in the past. The aim was not necessarily to
reconstruct missing or incomplete, but also questioned
as-built drawings. An example is the localization of lon-
gitudinal tendons inside existing bridge webs to safely
drill cores and subsequently pretension anchor blocks
transversely against each other for external strength-
ening actions. Let us thus define the depth position
of a (posttensioned bonded) tendon in relation to the
concrete surface, which serves as the measuring area
in ground penetrating radar (GPR) inspection, as the
measurand . The principle of GPR is to derive the
distance between an antenna and an object of interest
using (a) the observed times of flight (TOF) needed for
an impulse to travel the respective distance forwards
and backwards and (b) the propagation velocity of the
electromagnetic wave inside the specific investigated
volume. The equation

Y = dSp = f(Xi) = V T/2, (2)

with T being the observed TOF and V being the
velocity, can therefore serve as starting point to de-
velop the individual model function in the case of echo
arrangement (see Figure 2 in section 3) of the GPR
antennas.

Subsequently, the relevant input quantities need to
be quantified. Since they are considered to be random
variables in most cases, quantification means finding
a stochastic model appropriately representing the in-
dividual phenomena. For this purpose, the evaluation
of measuring series with statistical methods, the type
A evaluation, or the use of other information such as
data from calibration certificates, physical reasoning,
and experts’ judgements, the type B evaluation, can
lead to suitable distributions of the input quantities.

The type A evaluation can be applied if a measur-
ing series consists of a sufficiently large number of
identically distributed, independent values that were
observed under constant conditions. The distribution
parameters of an input quantity can then be estimated
with statistical methods. It should be noted that the
application of statistical methods may yield less reli-
able results in comparison to the type B evaluation if
the number of observations is too small. Particularly
precise knowledge about a quantity may in turn obvi-
ate the need for experiments and type A evaluation.
In type A, the sample mean is often considered the
best estimate

x̂ = x − b =
(

1
n

n∑
i=1

xi

)
− b (3)

of a directly measurable quantity, provided that
the systematic errors b have been estimated and cor-
rected. To this best estimate, a standard uncertainty
u(x̂) has to be attributed, that can be interpreted as
standard deviation of the mean. It describes, how
well x̂ estimates the expected value [7], and equals the
sample standard deviation divided by the square root
of observed values

√
n.

u(x̂) = S√
n

=

√√√√ 1
n(n − 1)

n∑
i=1

(xi − x)2 (4)

It should be noted that the simple description of
observations may not lead to appropriate stochas-
tic models. On the one hand, the frequently used
standard deviation σX describes the dispersion of
observations and allows for interpretations in a way
that, e.g., 68 out of 100 single values observed in
the future are expected to be included in an inter-
val (x − σX ; x + σX). On the other, the standard
measurement uncertainty, cf. Equation ??, quanti-
fies the scattering behavior of the directly measurable
input quantity, that is, the characteristic of interest.
This measure appears suitable in measured data-based
modelling of basic variables since it is usually aimed
to characterize (physical) characteristics, but not to
predict single future observations. With regard to
the distribution type, a convenient justification for
choosing a normal distribution in type A evaluation
(and also for the measurand Y ) can be found in the
central limit theorem for many practical cases.

Example: Consider T in Equation 2 as a set of
random variables which not only consists of the ob-
served TOFs TA but also of further input quantities
affecting the outcome of the measurement. These quan-
tities

∑
Ti among others include unknown processes

within the equipment ("black box"), the limited measur-
ing scale resolution, the spacing between transmitting
antenna, receiving antenna, and concrete surface, as
well as frequency- and travel path dependent changes
in pulse shape, and uncertainties in signal processing.

T = TA − TV −
∑

Ti (5)

All identified and individually relevant input quan-
tities such as the lead time TV are usually modelled
as random variables. The black box phenomena, for
example, can be comparatively easily quantified. In
this specific case, 200 TOFs have been derived from
echoes originating from the backwall of an isotropic-
homogeneous specimen (polyamide) at the same posi-
tion to ensure repeatability condition approximately.
All the TOFs equal 4, 617ns. Unknown processes possi-
bly occurring in the equipment therefore do not lead to
significant random errors. The related input quantity
can thus be individually neglected.
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Figure 1. a) 2 GHz GPR antenna, specimen, and measuring line; b) Radargram with both tendon indications
(diffraction hyperbola); c) Radargrams of Kirchhoff migrated data gathered on the same line using different propagation
velocities. An overestimation leads to V-shaped amplitudes in upper direction (on the right). If underestimated, the
diffraction hyperbola remains visible (third radargram from the right).

Considering that metal layers with thicknesses less
than λ/20 can be usually detected in GPR testing,
that wavelengths λ = 5 . . . 12 cm are common in
concrete, and that the electromagnetic pulses are to-
tally reflected at metallic objects, the measuring se-
ries tA = (tA,1, . . . , tA,n)T contains i = 1, . . . , ntime
stamps tAi describing the time it takes the pulse to
travel through the concrete to the tendon duct and
back to the antenna. Due to the requirement of i.i.d.
observations, such a measuring series is only valid to
describe the mounting depth of a tendon at one position
in tendon length axis (sampling point) and therewith
contains the values observed in a certain small area
within the measuring plane. The sampling points can
then be combined to interpolate the curve of the ten-
don. The time stamps gathered to describe the tendons
mounting depth in the cross-section to be assessed in
section 3 are: 2, 81ns, 2, 81ns, 2, 81ns, 2, 79ns, 2, 79ns,
2, 79 ns, 2, 79 ns. Thus, Equation 4 yields the best
estimate t̂A = 2, 80 ns, and Equation ?? the standard
uncertainty u(t̂A) = 4 × 10−3 ns.

The aim of TOF measurement is to determine the
time span required for a pulse to travel a certain dis-
tance within a component. Picked time stamps tA,i

additionally contain (at least partly) the time span
necessary to generate, transmit, and sample the signal.
This lead time or offset TV is a systematic error which
must be estimated and corrected to define an unbiased
time zero. Different approaches have been proposed
for this purpose (see, e.g., [14]). One option is the
lead time estimation using the intercept of a regression
line, where the -values describe a successively varied
distance between the antenna and a metal plate. The
-values are the respective measured TOFs. A numeri-
cal discussion is delimited. However, the -intercept at
x = 0 mm yields the best estimate and the variance
of the intercept the (squared) standard uncertainty.

In type B evaluation, the standard measurement
uncertainty is derived from a distribution function
defined using non-statistical methods. The standard
uncertainties to be attributed to the best estimates
of the input quantities depend on the distribution
families chosen.

Example: Consider the individual propagation ve-
locity of the electromagnetic wave inside the concrete
V , which (acc. to Equation 2) needs to be known
to derive mounting depths and depends primarily on
the relative permittivity. Provided the personnel is
appropriately qualified, it can be sufficient to esti-
mate the value of the velocity by analysing the shape
of the diffraction hyperbola or focussing level of mi-
grated indications of bar-shaped reflectors with round
cross sections. Experts judged that a deviation from
the physically reasonable shape of the respective in-
dications could be identified in this individual case
when the velocity is over- or underestimated by about
± 0, 75 cm/ns. The effects are shown qualitatively in
Figure 1. The subjectively highest focusing level of the
tendon indications in the specific case outlined in sect.
3 could be achieved with a set velocity of 12 cm/ns..
If solely the limit values of an interval are known, in
which the random variable realizes arbitrarily, then it
can be derived from the principle of maximum entropy
that the quantity is uniformly distributed. From this it
follows, that V ≈ U with a best estimate v̂ = 12cm/ns
and a standard uncertainty u(v̂) = (b − a)/(2

√
3) =

(12, 75 − 11, 25)/(2
√

3) = 0, 433 cm/ns with a, b being
the maximum and minimum values. If it turns out
that such "rough" modelling is not sufficient to achieve
the desired measurement precision, models with large
uncertainty contributions can be refined.

Another input quantity TZ that arises frequently in
measurements describes the limited resolution of the
measuring scale, in this case time axis, and can be
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Abbr. Description Distr.
Type

Best estimate
x̂i

Standard uncertainty
u(x̂i)

V Propagation velocity Uniform 12 cm/ns 0,433 ns
TA "Displayed" TOFs Normal 2,8 ns 4 × 10−3 ns
TV Offset / delay Normal (0,9 ns) 8, 6 × 10−2 ns
TM "Black box" NDT-system const. 0 ns 0 ns
TZ Time axis resolution Uniform 0 ns 7 × 10−3 ns
TAB Spacing antenna / surface Uniform (0,035 ns) 0,02 ns

Table 1. Individual models of the input quantities used to compute the measurement result. The biases regarding
offset t̂V , antenna-surface-spacing t̂AB , and transmitter-receiver-spacing were corrected during data migration.

evaluated precisely via type B. The spacing ∆t between
two sample values equals the inverse of the sampling
rate fs. The quantity contributes to uncertainty in that
an observed amplitude falls arbitrarily into an interval
spanned symmetrically around a sample value. Thus,
again, the limit values of the random variable can be
specified, whereas no information about a weighted
distribution of the probabilities within the interval is
available. From this, fs = 42, 7 GHz, and thus ∆t =
0, 023 ns it follows a uniform distribution with b =
±∆t/2 and u(v̂Z) ≈ 7 × 10−3 ns.

Modeling should not rely too much on the consider-
ation of perceived or physically reasoned correlations
since it is the statistical relationship between (two)
random variables and not the dependencies between
the associated physical quantities that need to be es-
timated. It may therefore be sufficient in practice,
to solely appreciate the pairwise correlations between
type A evaluated input quantities, since empirical
covariances could then be easily computed (among
other parameters). Nevertheless, correlations with at
least on type B evaluated input quantity would be
disregarded, which is only permissible if the consid-
ered input quantities are not significantly correlated
[7] or respective information is neither available nor
appropriately obtainable.

If the input quantities have been identified individ-
ually, if suitable models have been defined at least for
the relevant quantities, and if the input quantities Xi

have been brought into a functional relationship, the
main issue in measurement uncertainty calculation
has been solved. Based on this model of the mea-
surement, the calculation formulae provided in the
GUM can be straightforwardly applied. Inserting the
estimated values x̂i of the input quantities (in case
of type A evaluation acc. to Equations 4) into the
model equation, cf. Equations 1, 2 and 5, yields the
estimated value of the output quantity ŷ, which needs
to be corrected for systematic errors that have not yet
been taken into account:

ŷ = f(x̂1, . . . , x̂n) (6)

The uncertainty to be covered by the output quan-
tity Y is referred to as combined standard measure-
ment uncertainty u(v̂), which expresses the measure-

ment uncertainty as an estimated standard deviation
of the measured quantity value ŷ and is calculated
by applying the error propagation law to the model
equation:

u(ŷ) =

√√√√ n∑
i=1

c2
i u2(x̂i) + 2

n−1∑
i=1

n∑
j=i+1

ci cj u(x̂i, x̂j) (7)

The empirical covariance is denoted by u(x̂i, x̂j),
and the sensitivity coefficient of the input quantity
Xi by ci. It should be mentioned that, in contrast
to FORM , the model equation is partially derived
with respect to the input quantities at the coordi-
nates of the best estimates x̂i in order to compute the
sensitivity coefficients.

Example: The model equation used to calculate
the measurement result is given in Equations 2 and 5.
The stochastic models of the input quantities can be
found in Table 1. A measured value of the mounting
depth ŷ = d̂spis calculated in each case for one tendon
at one specific point in the longitudinal tendon axis by
inserting the best estimates x̂i into the model equation.
From this, it follows that: d̂sp = 16.8 cm.

The combined standard measurement uncertainty
u(ŷ) = u(d̂sp) is computed with Equations 7. First,
the partial derivatives of the model equation with re-
spect to the single input quantities at the best es-
timates yield the sensitivity coefficients . Second,
the uncertainty contributions c u(x̂i) can be easily
computed. The squared contributions divided each
by the sum of squares indicates the percentage dis-
tribution of the combined measurement uncertainty
among the input quantities. The sum of [c u(x̂i)]2,
in turn, yields the squared combined standard mea-
surement uncertainty in the case of uncorrelated in-
put quantities. With cv = ∂d/∂v ≈ 1, 4, the uncer-
tainty contribution of the propagation velocity, e.g.,
equals 0,61 cm. The influence of the velocity is
thus [cv u(v̂)]2 /

∑
[ci u(x̂i)]2 = 0, 612/0, 66 ≈ 56 %,

which appears consistent considering the comparatively
"rough" modeling process of V . Third, the combined
standard measurement uncertainty is the square root
of
∑

[c u(x̂i)]2 since correlations do not affect the
outcome in this particular case. The measurement
result can now be expressed as follows: dSp ∼ N ;
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Figure 2. Longitudinal view and cross-section of the investigated bridge (top); excerpt of the decisive cross-section
with imaged migrated data (bottom left) and perpendicular scan with sketched GPR echo arrangement (bottom
right).

dSp = 16, 8 cm; u(dSp) = 0, 8 cm. Comparative sim-
ulations result in slight differences of ∆ < ±0, 01 cm
each. The choice of the normal distribution is thus
individually suitable, although the propagation velocity,
which has been modelled uniformly distributed, can be
considered as a dominant uncertainty component - as
shown above. The interval 16, 8 cm ± 0, 8 cm covers
the set of true measured values with a probability of
approx. 68 %. If this coverage probability is consid-
ered individually too low, the interval can be easily
extended.

A suitable way to unambiguously express a measure-
ment result acc. to the GUM is the specification of
the measured quantity value ŷ, the combined standard
measurement uncertainty u(ŷ) and the distribution
type of the measurand Y . It may be helpful to provide
information on the considered correlations. Another
option is to compute the expanded measurement un-
certainty in order to derive coverage intervals. Further
details can be found within the GUM framework and
schematically, e.g., in [15].

When developing the GUM, it was aimed to provide
a general method and to enable the further use of the
results [7]. The comparability of the results allows for
successive calculations of measurement uncertainties
in relation to usual boundary conditions, which may
be used as orientation in the future. Compared to the
traditional approaches, the application of the GUM
yields rather realistic than disproportionately large
values for the measurement uncertainty [7]. One point
of criticism is that the type A input quantities imply
the frequentist interpretation of probability and those
evaluated acc. to type B the subjective interpreta-

tion [17]. Nevertheless, the classical estimators could
be interpreted as an approximation of the estimators
according to type B evaluation, so that the equal
treatment of all input quantities is also justified in
terms of probability theory [17]. Overall, the GUM
rules yield exact results for linear model equations and
normally distributed input quantities. However, they
are in most cases sufficiently accurate for practical ap-
plications. Simulation techniques can be additionally
used to verify the choice of a distribution family for
the measured quantity.

3. Demonstration - Measurement
uncertainty in structural
reliability assessment

The investigated structure is a four-span longitudi-
nally and transversely prestressed concrete bridge with
a total length of approx. 96 m and a slab-and-beam
cross section with a width of more than 23 m (Fig-
ure 2). The bridge has been assessed in serviceability
limit state (SLS) decompression in transverse direc-
tion. Prior finite element analyses revealed the center
of a cross-section within the right span highlighted at
the top of Figure 2 to be decisive. The investigations
thus refer to this specific component. The stress anal-
ysis was performed using a representative one-meter
strip in the longitudinal bridge direction (b = 1 m)
at the upper extreme fiber of the cross section. The
limit state function contains the normal forces N and
bending moments M as well as the dimensions A,
h, b of the cross section and an inner lever arm zp

describing the eccentricity of the transverse strands
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Figure 3. Individual effects of including the non-destructively measured vertical position of the transverse tendons
on reliability using FORM in SLS decompression; βHL,init = 5, 18, βHL,NDT = 6, 18; dSp,init ∼ N(16, 3 cm, 1, 0 cm),
cf. [8]; dSp,NT D ∼ N(16, 8 cm, 0, 8 cm); extracted from [16].

related to the vertical center of the cross-section. This
inner lever arm zp can be written as a function of
the spacing between the tendon ducts and the un-
dersurface of the slab dSp. This distance dSp can be
efficiently measured with GPR and has been found to
be decisive (αr, dSp

= 0, 74) during pre-investigations.
The initially assumed standard deviation of 1 cm (Ap-
pendix A) is based on the JCSS Probabilistic Model
Code [8]. The initial mean µ = 16, 3 cm assumed
prior to onsite testing corresponds to the available
drawings. The sensitivity of the structural behavior
to conceivable geometrical imperfections, cf. [8], mo-
tivated NDT on-site. The stochastic models can be
found in Appendix A. The limit state function is:

g(σc) = 0 −
(

N

A
+ M

W

)
=

0 − ΘE,N

∑
Ni

h b
− ΘE,M (Np zp +

∑
Mi)

h3 b/12
h

2 ;

zp = −h

2 + dSp, y + ϵ

(8)

Chosen measured data are illustrated in Figure 2.
The measurement uncertainty calculation in section
2 yields the measurement result dSp ∼ N with
dSp = 16, 8 cm and u(dSp) = 0, 8 cm. This result
describes the vertical tendon position in relation to
the measuring plane (the slab undersurface) in the
center of the cross section, which is shown at the
bottom left of Figure 2. Thus, the set of population,
cf. [8], equals the specific component to be assessed
in this particular reliability analysis, i.e. decompres-
sion proof. The spatial variability would have to be
considered additionally, for instance, in system re-
liability assessments, and temporal changes (which
appear rather unlikely with respect to geometrical
dimensions) for time-variant quantities.

The combined measurement uncertainty u(ŷ) ex-
presses the inherent variability of the observed quan-

tity as well as the measurement uncertainty itself as
standard deviation. The measured quantity value ŷ
can be used as expected value of the basic variable
especially in the case of a justified choice of a normal
distribution. Both values serve as starting point for
the NDT-based modeling of the basic variable dSp.
It can be necessary to cover additional uncertainties
such as model and statistical uncertainties. In view of
the fact that modeling in particular may significantly
influence the computational results, the application
of the GUM concept seems to be beneficial as the
comparability of measuring data-supported modeling
processes can be increased. Competing models and the
basic challenges in stochastic modeling of basic vari-
ables mentioned in section 2 should also be taken into
account. Models can be regarded as competing if, on
the basis of the available information, it cannot be de-
cided without arbitrariness which is individually more
suitable. However, the measurement result equals the
stochastic model of the NDT-supported basic variable
in this particular case since the tail-sensitivity problem
does not affect the update of this geometrical quan-
tity (the initial model is also normally distributed),
the uncertainty of the measurement model remains
insignificant (which is not unusual in metrology) and
other model uncertainties have been implicitly cov-
ered, as appropriate, by entering competing models
sequentially and observing the change in reliability.
The statistical uncertainty was estimated using the
standard deviation of the experimental standard devi-
ation of the mean of type A evaluated input quantities
[7]. The additional appreciation of this statistical un-
certainty in type A evaluated input quantities yields a
difference in the combined measurement uncertainty
of individually less than 0,1 mm. Finally, the incorpo-
ration of prior knowledge would have been necessary,
e.g., if the measured data could not describe the char-
acteristic of interest comprehensively. Regarding the
localization of tendons, this scenario may occur, if
the center of a tendon bundle is to be measured, but
not all single tendons could be detected. Then, the
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quality of the measurement result also depends on the
detection frequency. Probability of Detection analyses
may be used to objectively evaluate whether certain
objects can be reliably detected.

The effects of incorporating the non-destructively
measured inner geometrical dimension, that is, the
vertical position of the transverse tendons in the cross-
section center, on the Hasofer-Lind-reliability is sum-
marized in Figure 3. It can be seen that the slight shift
compared to the initially assumed position and the
reduction of uncertainty in relation to the probabilis-
tic modeling recommendations [8] yield an increase
in reliability of approx. + 19 %. Although the value
of the reliability index calculated based on the knowl-
edge available prior to any testing has been found
to be already comparatively high, it can be deduced
that a larger deviation between the as-planned and
as-built position of the tendons would affect reliability
considerably stronger. In other cases where inspection
results are incorporated into reliability assessment, a
noticeable reduction in numerical reliability may also
be observed - certainly in favor of a more realistic
structural assessment and to support the engineer
in making reasonable decisions. Further information
about the case-study outlined above can be found
in [11]. A second study dealing with ultimate limit
states was published in [18, 19].

4. Discussion and conclusions
It is vitally important to be aware of the condition,
i.e., the relevance, trueness, and precision, of infor-
mation to be used in reliability assessment. The un-
certainty associated with information acquisition and
processing should generally be considered; especially
if measured data are intended to be incorporated into
assessment. An advantage of the GUM approach is
that the results are verifiable and thus objectively
deniable. The rules are internationally accepted and
broadly applicable. Furthermore, inferences from the
calculated distribution to realizations that have not
been observed can be more likely drawn by synthe-
sizing the various uncertainty components, cf. [1]. In
addition, measurement uncertainty can be taken as
a comparable measure expressing the capability of
testing methods (or measurement procedures, respec-
tively) and may therewith be used for comparison with
the results of pre-posterior-analyses, e.g., to initiate
useful inspections. The measurement uncertainty can
and probably should also be included when updating
information based on, e.g., long-term monitoring data
via Bayes’ theorem (see, for example, [20]) and in
monitoring-based condition assessment particularly
when recorded values are close to certain thresholds.

A practical limitation is both the relatively large
effort and detailed knowledge of the measurement
processes required to model a measurement appropri-
ately. For this reason, the authors aim to develop a
systematic repository of models and quantified input
quantities for specific boundary conditions that are

considered common in structural engineering, which
can then serve as orientation for future measurement
uncertainty calculations performed by the engineers
working in practice. In addition, structure-specific
partial safety factors are intended to be derived as
a function of the type and extent of different on-site
measurements in order to increase the practicability
of the outlined approach.
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A. Appendix A
Individual stochastic models of the basic variables used to analyze SLS decompression with FORM; cf. [11].

Abbr. Description Distr.
Type Mean Std. dev. Dim.

ΘE,N
Model uncertainty (normal forces)
(values based on [21]) N (Normal) 1,0 σ = 0, 05

CoV = 5,0 % −

NG Normal force due to dead loads N -1,1 [22] σ ≈ 0, 07
CoV = 6,0 % [23] kN/m

NQ,T S

Normal force due to traffic loads
(TS, load model 1 acc. to
EN 1991-2 [24])

GUMBEL -1,23 σ ≈ 0, 18
CoV = 15,0 % [21] kN/m

NQ,UDL
Normal force due to traffic loads
(UDL, LM 1 acc. to EN 1991-2) GUMBEL 1,01 σ ≈ 0, 15

CoV = 15,0 % [21] kN/m

NP Normal force due to prestressing N -2036 [22] σ = 203, 6
CoV = 10,0 % [25, 26] kN/m

NK+S
Normal force due to creep
and shrinkage N 270 [22] σ = 40, 5

CoV = 15,0 % [25, 26] kN/m

NSE
Normal force due to load case:
subsidence const. -0,63 [22] − kN/m

NT
Normal force due to load case:
temperature const. 12,80 − kN/m

hy=0 Height of the cross-section N 0,327 σ = 0, 01 [8]
CoV ≈ 3,1 % [25, 26] m

θE,M
Model uncertainty (moments)
[21] N 1,0 σ = 0, 10

CoV ≈ 10,0 % −

MG
Bending moment due to dead
loads N 25,98 [22] σ ≈ 1, 56

CoV = 6,0 % [23] kNm/m

MQ,T S

Bending moment due to traffic
loads (TS, LM 1 acc. to
EN 1991-2)

GUMBEL 0,98 σ ≈ 0, 15
CoV = 15,0 % [21] kNm/m

MQ,UDL

Bending moment due to traffic
loads (UDL, LM 1 acc. to
EN 1991-2)

GUMBEL 4,87 σ = 0, 73
CoV = 15,0 % [21] kNm/m

MK+S
Bending moment due to creep
and shrinkage N -12,0 [22] σ = 1, 8

CoV = 15,0 % [25, 26] kNm/m

MSE
Bending moment due to
subsidence const. 0,37 [22] − kNm/m

MT
Bending moment due to
temperature const. −0, 58 − kNm/m

dSp,init

Initial distance between bottom
of the slab and the bottom of
the tendon duct

N 0,163 [22] σ = 0, 01 [8]
CoV ≈ 6,1 % M

ϵ
Eccentricity of the strands inside
the tendon duct N 0,034 [22] σ = 0, 0068 [8]

CoV = 20,0 % M

dSp,GP R

Measured distance between bottom
of the slab and the bottom of
the tendon duct

N 0,168 σ = 0, 008
CoV ≈ 4,8 % M
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