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Abstract. A novel method for estimation of rare event probability is proposed, which works also
for computational models returning categorical information only: success or failure. It combines the
robustness of simulation methods (counting failure events) with the strength of approximation methods
which refine the boundary between the failure and safe sets. Two basic tasks are identified: (i) extension
of the experimental design (ED) and (ii) estimation of probabilities. The new extension algorithm adds
points for limit state evaluation to the ED by balancing the global exploration and local exploitation,
and the estimation uses the pointwise information to build a simple surrogate and perform a novel
optimized importance sampling. No connection is presumed between the limit function value at point
and its proximity to the failure surface. A new global sensitivity measure of the failure probability to
individual variables is proposed and obtained as a by-product of the proposed methods.
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1. Introduction
This article promotes a recent work [1] by the author.
We revisit the problem of failure probability estima-
tion of an engineering product or a process, which
is represented by a computationally expensive math-
ematical model g(xxx). The model features uncertain
or random variables xxx and we assume the joint prob-
ability density fXXX(xxx) is known and can be uniquely
transformed to the space of independent Gaussian
random variables of dimension Nvar. The model g(xxx)
may return categorical output only, that is, failure
or success. The problem is to accurately estimate
the probability of failure with the smallest possible
number of g(xxx) calls.

The spectrum of existing methods for failure proba-
bility estimation is very rich. Their categorization can
be done depending on how they treat three groups of
input information: (i) the geometry and topology of
the input space of input variables indexed by a ran-
dom vector XXX, (ii) probability density function of XXX,
be it the true density or some modified ”sampling”
density, and (iii) the limit state function g(xxx). From
the point of view of the way that the methods for the
estimation of failure probability handle the outputs
of the limit state function, two basic groups can be
identified. Simulation methods such as Monte Carlo
integration, Importance Sampling [2–4] or Asymptotic
Sampling [5] use the binary information only: they
count the failure events out of all Nsim function calls
and associate these events with some weights to be
used in estimates performed via arithmetic or weighted
averages. These methods are robust with respect to
complicated functions g(xxx), which may be noisy, can
have disjoint failure sets, the landscapes may non-
smooth or there can be even regions for which g(xxx)

return no answer at all. However, excessively high
number function calls needed in simulation methods
when dealing with practical problems, in which the
true failure probability is very low. A disadvantage
of the simulation methods is that they use no or only
little information from previous function calls.

The other group of methods can be termed ap-
proximation methods. They make various assump-
tions about the shape of g(xxx), and in most cases,
the methods work for smooth functions only. They
can be seen as methods making use of the gradient
optimization in search for the most probable failure re-
gions (FORM/SORM [6–14], Subset Simulation [15])
or they adaptively build approximations (surrogate
models) of g(xxx) [16]. The surrogate model can be
a smooth approximation based of polynomials, us-
ing Kriging (Gaussian process regression) [17, 18],
Polynomial Chaos Expansions [19, 20], radial basis
functions [21, 22], or classifiers such as artificial neural
networks [23–25] or Support vector regression surro-
gates [26–30]. The evaluation of the surrogate must
be sufficiently fast to be useful for the robust sampling
strategies making the probability estimations. There
is also a class of methods which construct approxima-
tions of the true distribution function of numerical
values of g(xxx) based on the empirical histograms to es-
timate the cumulative probability distribution at zero
value, that is, direct estimation of failure probability.
It is clear that the shape of the cumulative distribu-
tion function is strongly dependent of the particular
formulation of g(xxx). In other words, various reformu-
lations and reparametrizations of g(xxx) which do not
alter the failure surface lead to quite different distri-
bution functions of the outcome which complicates
this kind of approximation.
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In practical applications of reliability estimation
methods, we face a variety of challenges and there are
difficulties which can not be overcome by the existing
algorithms. Suppose, for example, that the state of an
existing structure is modelled by an algorithm (e.g.,
a nonlinear FEM simulation). This model can provide
highly nonlinear output in the space of input variables.
The model can capture the existence of multiple fail-
ure modes whose probabilities are not many orders of
magnitudes different (a situation with multiple design
points in FORM/SORM), and there can be combina-
tions of inputs for which the algorithm provides no
meaningful response. The existence of these scenarios
motivates the development of more robust algorithms
such as the one presented in this paper. Another chal-
lenge is connected with the spurious dependence of
answers obtained by many existing algorithms on the
particular formulation of the limit state function. The
same system condition can be expressed via different
formulations of the function of input variables leading
to dramatically different g(xxx) function ”landscapes” in
the input space. The landscape is, however, important
for gradient-based algorithms, be it the determinis-
tic ones (design point search) or stochastic gradient
descent methods (Subset Simulation). Moreover, the
some models can also be formulated in a way that
the g(xxx) function value is not reasonably reflecting
the condition of the system (differentiating between
categories ”safe” or ”very safe”). Our argument is
that in these cases, it can be better to consider the
categorical information only: safe operation or failure.
The failure category can actually be represented by
a finite number of potentially different failure codes,
and there can also be an additional category ”no re-
sponse”. The algorithm for reliability estimation must
be able to work with such a crude information and
keep going upon receiving any of these state codes
by (i) processing the information and (ii) proposing
a new point for evaluation by the model.

In this paper, we briefly present a technique consist-
ing of two algorithms. One for the adaptive sequential
extension of the experimental design (ED), that is, the
table of Nsim points each with Nvar coordinates, and
the other for importance sampling analysis performed
in the standard Gaussian space. The method is able
to work with binary functions, however, if the g(xxx)
function returns values usable for building smooth
approximation, the estimation task can be performed
with an advanced surrogate function with the chance
of obtaining more accurate results for small EDs.

2. Gaussian space with
independent marginals

The methods presented in this paper use the fact that
the rotationally symmetrical Gaussian space of dimen-
sion Nvar can be indexed either by Nvar orthogonal
coordinates using the Cartesian coordinate system, or
by (i) Nvar −1 independent and identically distributed
directions and (ii) one radial distance from the origin

a) b)

c) d)

2D

3D

Figure 1. The first seven levels of exploration sets
(layers) inNvar = 2 andNvar = 3 dimensional standard
Gaussian space. Panels a,c: nested Nvar-balls. Panels
b,d: realizations of random exploration sets.

which is independent from the directions. The radial
distance from is χ-distributed with Nvar degrees of
freedom. This allows for direct computations of prob-
abilities associated with Nvar-balls of a given radius
r, see [1] for mathematical details and the available
numerical libraries which facilitate the work in the
(hyper)spherical coordinate system.

We now define a sampling density for a ring (an-
nulus), which is a rotationally symmetrical region
between two Nvar-balls defined by two different radii,
r < R. The probability density for a point xxx is a scaled
standard Gaussian density

hann (xxx; r,R) = ΠNvar
v=1 φ(xxxv)
pann

= ΠNvar
v=1 φ(xxxv)
pR − pr

(1)

and zero otherwise, where φ(xxxv) is the univariate stan-
dard Gaussian density. In this equation, the scaling
denominator pann = pR−pr is formed by the difference
between two probabilities corresponding to probabil-
ity content in the two Nvar-balls. This density can be
rewritten in terms if the radial distance ρ ≡ ∥x∥.

3. Extension of the experimental
design

3.1. Exploration set
Assume now that the input space is divided into rota-
tionally symmetric layers with predefined probability
content. Each such layer is obtained as the difference
between two Nvar-dimensional co-centric balls. The
first ball contains, say, 90% of the total probability,
the next ball contains 99% so that the ring (an an-
nulus) in between adds 1% to the smaller ball. The
next onion-like shell encloses 99.9% probability etc.
In this way, the space is divided into layers such that
the probability contents are covered in a controlled
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Figure 2. Two-dimensional illustration of the combined set candidates and the selection process (standard Gaussian
space) for a binary performance function dividing the space into a ”flower-shaped” safe domain and the surrounding
failure domain. At Nsim = 9 model evaluations, the rare event is hit for the first time. At Nsim = 10 an exploitation
candidate is selected, while at Nsim = 11 the exploration candidate wins using the highest value of the ϕ criterion
expressed by the blue color saturation. A complete evolution of the extension of the ED using the ϕ-based selection
process for another run of the same problem is available as a video.

fashion and the radii of the Nvar-balls forming the
boundaries are easily obtained using the χ distributed
variable discussed above. Assume now that the surface
of each such ball is uniformly covered by a predefined
of points. The complete set of point corresponding
to all considered layers is called the exploration set.
Figure 1 illustrates the nested rings and their coverage
by points for Nvar = 2 dimensions and 3D.

3.2. Exploitation set
Suppose that the experimental design contains at least
one failure point and at least one safe point. From
that moment it makes sense to expect that the true
boundary between the safe and failure sets passes
somewhere between the two points with a different
event type. We propose to generate a cloud of ”can-
didate dots” centered at each failure point and with
a Gaussian density of standard deviation equal to√
Nvar − 1. From all these candidate dots, we only

consider those whose two nearest neighbors have two
different classifications from g(xxx). The set of all dots
fulfilling this requirement collectively forms the ex-
ploitation set and they are considered in competition
for the best candidate alongside the exploration set.

3.3. ψ criterion for candidate selection
Suppose the combined exploration-exploitation set
of candidates is available. We propose to select the
most informative candidate using the criterion which
balances the local exploitation with global exploration.
Each candidate is associated with the criterion value
which roughly estimates the probability being resolved
by evaluating the g(xxx) function in that candidate

ψc =
√
fcfs︸ ︷︷ ︸

ave probability

(lc,s)Nvar︸ ︷︷ ︸
∝vol.

(2)

The square root term represents the geometric mean
of probability density fc in the candidate ”c”, and the
density fs in its nearest neighbor ”s”. This average
is multiplied by a term proportional to the volume
occupied by the region between the candidate and its

nearest neighbor. This volume is estimated as their
Euclidean distance lc,s raised to the domain dimension.
The candidate delivering the highest value of the ψ
criterion is selected to extend the current ED. In this
way the algorithm automatically balances between the
refinement of the failure surface approximation and
the expansion of the ED in the input space towards
infinity. Simply, the candidate yielding the largest
(approximate) probability amount is selected. The ψ
criterion can be monitored during the extension and
its value can support the stopping criterion. Figure 2
illustrates the combined exploration and exploitation
sets and shows the ranking of candidates using the ψ
criterion via the darkness of the blue infill.

4. Estimation of probabilities
At any stage of the ED extension process, the desired
probabilities can be estimated based on point-wise
information, i.e., the current ED with known g(xxx)
outcomes. We propose to substitute a true compu-
tationally expensive model (a simulator) by a com-
putationally cheaper model constructed in a solely
non-intrusive way with respect to the original sim-
ulator, i.e., in a purely data-driven manner. When
the performance function g(xxx) returns continuously
distributed, trustworthy, and well-behaved output,
traditional smooth surrogate models such as PCE,
Kriging, radial basis functions, etc., can be employed
for fast sampling analysis. Such a surrogate model has
the potential to improve the accuracy of the impor-
tance sampling estimation presented in this section
because the failure surface may be approximated more
accurately. It is guaranteed that the above-described
extension of the ED was performed in such a way that
the surrogate model was well supported, especially
when close to the failure surface. In this paper, how-
ever, we focus on cases in which the original simulator
is trusted to provide categorical information only, i.e.,
one of a finite set of classifications. Similarly, the
surrogate will simply be a finite-state classifier. We
propose to use simply a classifier based on the nearest
neighbor: at any location in the input space, the event
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Figure 3. Top row: on-the-fly classification of territories. Two top left panels: two nearest neighbors for the
classification of boundary regions – red and white candidates are censored out, and the retained (blue) candidates are
considered for the extension of ED. Two top right panels: classification of dots and nodes via the nearest neighbor.
Bottom: history of the failure probability estimation and the ψ criterion quantifying the approximate ”probability
bites” by selected candidates. The complete evolution of all panels is demonstrated in the Wavy circle video.

type is approximated by the event previously detected
in the nearest ED point.

Suppose we have the classifier at hand in the form
of an indicator function 111(Nsim)

F (xxx) based on Nsim
evaluated points in which the g(xxx) was evaluated
previously. 111(Nsim)

F (xxx) approximates the true indicator
function 111F (xxx).

Using the importance sampling (IS) numerical in-
tegration, the probability of an event type T occur-
ring when the indicator function 111T (XXX) signals it
is defined as the expectation: pT = E [111T (XXX)] =∫

·· ·
∫
D 111T (xxx) fXXX(xxx) dxxx. Let h(xxx) be the IS density

which is positive wherever event T occurs. The prob-
ability of event T can be rewritten as

pT =
∫
D

111T (xxx) fXXX(xxx)
h(xxx) h(xxx) dxxx (3)

= Eh

[
111T (XXX) fXXX(XXX)

h(XXX)

]
, (4)

where Eh [·] denotes the expectation for XXX being dis-
tributed according to h: XXX ∼ h. The IS estimation of
pT based on the current approximation of 111(Nsim)

T (xxx)
of the true indicator function 111T (xxx) is made with nIS
integration nodes via the arithmetic average

p
(Nsim)
T ≈ 1

nIS

nIS∑
i=1

111(Nsim)
T (xxxi)

fXXX(xxxi)
h(xxxi)

, XXXi ∼ h. (5)

The IS estimator is unbiased by construction.
We propose to use the following cubature via a global

IS using the rotationally invariant density hann (xxx; r,R)
in an important ring, which was introduced in Eq. (1).
Suppose the screening dots were not localized in a very
small region for which the localized importance sam-
pling would be efficient. We propose the use of use
a large pool of ”integration nodes” selected from sam-
pling density hann(xxx) which excludes the useless Nvar-
ball of the radius r (= the distance of the most central
”screening dot” from the origin; see the magenta points
in Figure 3). Additionally, we propose that the density
also excludes the exterior of the Nvar-ball with the
radius R > r. The outer radius R is obtained using
the previous estimation of the rare event p(Nsim)

T

R(p(Nsim)
T ;Nvar) = F−1

ρ

(
1 −

p
(Nsim)
T
104 ;Nvar

)
. (6)

Based on the information from the screening dots, we
presume that the interior of the Nvar-ball of radius r
does not contain any failure event. The number 104 is
selected to guarantee that the ignored space outside
the ball of radius R is associated with a probability,
which is four orders of magnitude less than the cur-
rent estimate of the rare event probability. Different
choices of this threshold are possible.

Let us now consider the sampling density
hann (xxx; r,R) introduced in Eq. (1) and substitute it
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into Eq. (5)

p
(Nsim)
T ≈ 1

nIS

nIS∑
i=1

111(Nsim)
T (xxxi)

fXXX(xxxi)
hann(xxxi)

= pann

nIS

nIS∑
i=1

111(Nsim)
T (xxxi)︸ ︷︷ ︸
nIS,T

= pann
nIS,T
nIS

. (7)

In other words, computation of the likelihood ratio
(fXXX/h) at each node is not needed as the Gaussian
densities cancel out. This is because the samples have
their density proportional to fXXX . It suffices to simply
compute the proportion of IS nodes that signaled
event T (e.g., failure) and multiply it with pann. The
closer the true event domain is to the annulus, the
closer hann is to the optimal IS density, and so the
estimation variance vanishes. With this strategy, the
annulus between the two radii r and R is effectively
examined. Whatever event occurs outside the outer
radius R is associated with a negligible probability.

The variance of such an IS estimator is also simple
to obtain

Varh[p(Nsim)
T ] ≈ 1

nIS

{[
nIS,T
nIS

p2
ann

]
−
(
p

(Nsim)
T

)2
}

=
p

(Nsim)
T
nIS

(
pann − p

(Nsim)
T

)
, (8)

and therefore, by using Eq. (7), the coefficient of
variation of the estimator associated with the indicator
function used is simply

CoVh[p(Nsim)
T ] ≈ 1

√
nIS

√
pann

p
(Nsim)
T

− 1 (9)

= 1
√
nIS

√
nIS
nIS,T

− 1 (10)

Figure 3 presents all the important information
about the process of extension of ED (top left) and
the estimation of probabilities (top right) which can
be performed at any time during the process. The
evolution of both is shown in the Wavy circle video
covering the history from the very first limit state func-
tion evaluation up to Nsim = 200. The video frames,
which can be displayed one by one, correspond to indi-
vidual stages of the process, thus enabling a detailed
inspection of the process. The accuracy of the estima-
tion is excellent already at Nsim ≈ 70 when all of the
seven ”failure regions” become discovered. The blue
line plotted in the bottom diagram shows the amount
of the ”probability bite ψ” occupied by the neighbor-
hood of the selected candidate. It can be seen that
once about Nsim = 30 points have been evaluated, the
ψ contributions become smaller than the rare event
probability itself. The decrease in ψ with an increas-
ing Nsim can be used, along with the stabilization of
probability estimations, to decide the profitability of
further g(xxx) function evaluations (stopping criterion).

5. Global sensitivity measures
In [1] we also introduce a new generalized impor-
tance measure that makes no use of the performance
function’s gradient and considers all (known) points
contributing to failure, weighted by the original den-
sity. The proposed measure comes as a by-product of
the above-proposed technique for reliability estima-
tions. Consider that the local contribution to failure
probability of any point xxx = {x1, . . . , xv, . . . ,xxxNvar}
can be decomposed into individual coordinates in the
spirit of the FORM α-sensitivities

α2
v(xxx) =

(
xv

ρ(xxx)

)2
= x2

v∑Nvar
v=1 x

2
v

, (11)

so that
∑Nvar

v=1 α
2
v(xxx) = 1 for any xxx . The denomina-

tor ρ2(xxx) is simply the squared Euclidean distance
between a general point xxx and the origin. These α2

v(xxx)
can be viewed as importance measures of the indi-
vidual dimensions and can be used as additive shares
of probability density at any point xxx. This choice is
natural as αvs weigh the individual increments to the
distance ρ: αv(x) = ∂ρ(xxx)

∂xv
. Using these shares, the

total failure of probability can be written as

pF ≡
∫

· · ·
∫
F

Nvar∑
v=1

α2
v(xxx)fXXX(xxx) dxxx

=
Nvar∑
v=1

∫
· · ·
∫
F
α2

v(xxx)fXXX(xxx) dxxx =
Nvar∑
v=1

pF ,v. (12)

In this way, the probability of failure (or analogously
any event type) is obtained as a sum of contribu-
tions pF ,v of individual variables. Each variable v
contributes to pF by

pF ,v =
∫

· · ·
∫
F
α2

v(xxx)fXXX(xxx) dxxx (13)

=
∫

· · ·
∫
F

(
xv

ρ(xxx)

)2
fXXX(xxx)︸ ︷︷ ︸

fv(xxx)

dxxx (14)

=
∫

· · ·
∫
F
fv(xxx) dxxx, (15)

where we define a part of the standard Gaussian den-
sity ascribed to a single variable v as (see also the
illustrations in Figs. 4c and d)

fv(xxx) = fXXX(xxx)
(
xv

ρ(xxx)

)2
. (16)

This local contribution to pF ,v(xxx) is easy to evaluate
as it is dependent only on the coordinates of point
xxx and its standard Gaussian density. Finally, the
shares pF ,v can be standardized by pF to form the
proposed global importance measures s2

v associated
with individual variables

s2
v = pF ,v

pF
, i.e.

Nvar∑
v=1

s2
v(xxx) = 1. (17)
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true fail.
surface

Figure 4. Measures of importance with respect to failure probability. a) illustration of FORM α-sensitivities
constructed using linearization of a failure surface in the most central failure point xxx⋆. b)-c) illustration of the
proposed global sensitivity measures s2

v by decomposition of pF into additive contributions by individual variables.

An important aspect is that the proposed s2
vs are

not based on values of the performance function, as
only the binary information indicating an event is
needed. This is an important property because the
importance measures should not be dependent on the
way a performance function is defined if it provides the
same failure boundary. A robust importance measure
for sensitivity to an event should be invariant under
reformulations or reparametrizations of the underlying
problem.

The evaluation of individual pF ,v (and therefore
also s2

v) is very cheap as it can be seen as a by-
product of the sampling analysis employed to deliver
an estimation of pF . Suppose we have an existing
set of points that were sampled proportionally to
the standard Gaussian density fXXX(xxx). It can be the
global importance sample with Nsim points that was
obtained outside the Nvar-ball or in the annuloidal
hann(xxx) ∝ fXXX(xxx). From this sample, we only select
a vector xxx containing nF points marked as ”failure”.
All these points are equally probable, and they each
represent the same share of the estimated failure prob-
ability pF (xxxi) = pF/nF , i = 1, . . . , nF . This share
can be further split into individual directions in the
spirit of Eq. (11) such that the contribution of the ith
point in the vth direction reads

pF ,v(xxxi) = pF (xxxi)
x2

i,v

ρ2(xxxi)
= pF
nF

x2
i,v

ρ2(xxxi)
, (18)

i.e., each point xxxi contributes

pF (xxxi) =
Nvar∑
v=1

pF ,v(xxxi) = pF
nF

(19)

where xi,v is the vth coordinate of point xxxi and
ρ2(xxxi) =

∑Nvar
v=1 xxx

2
v is the squared Euclidean distance

of point xxxi from the origin. The desired estimation of
importance measures s2

v of individual directions can
be obtained by summation over nF failing nodes with
a fixed direction index v and dividing by the failure
probability

s2
F ,v ≈

nF∑
i=1

pF ,v(xxxi)
pF

= 1
nF

nF∑
i=1

x2
i,v

ρ2(xxxi)
. (20)

Therefore, the proposed sensitivity measure is just
a cheap by-product of the proposed method. In cases
when the sampling probability is not proportional to
the standard Gaussian density, it is no longer true
that all points have the same contribution of 1/nF ,
and therefore straightforward re-scaling in a similar
manner to importance sampling must be employed

s2
F ,v ≈ 1

pF

1
nIS

nIS∑
i=1

111(Nsim)
F (xxxi)

fXXX(xxxi)
h(xxxi)

x2
i,v

ρ2(xxxi)
. (21)

6. Numerical examples
A variety of numerical examples which have been se-
lected to explore different classes of problems posing
unique challenges are presented in [1]. For the present
short paper, we selected four two-dimensional prob-
lems defined in the space of independent standard
Gaussian random variables; see Figure 5 for a quick
overview of the selected functions. Then, problems in
higher dimensions are analyzed.

In all definitions of the functions [1], we present
the expressions that return smoothly varying output
variables. However, the proposed extension algorithm
receives categorical information only (such as binary
”failure-success” codes). The same holds for the estima-
tion, which uses only the indicator functions signaling
an event. The only exceptions are ”Four Branch” and
”Metaballs” examples for which we also examine the
degree of improvement in probability estimation when
a smooth interpolation of the point-wise information
in the ED via the Radial Basis Function is employed
as the classifier.

We now briefly comment on numerical results ob-
tained for the Four Branch example, which is a fre-
quently used problem for demonstration of new tech-
niques and for comparison of results. The following
2-dimensional ”Four Branch function” [31] is a com-
mon benchmark problem in reliability analyses; see,
e.g., studies with various parameter settings [4, 17, 32].
The function describes the failure of a series system
with four distinct limit state components: two linear
and two nonlinear branches of the failure surface. The
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Figure 5. Overview of four two-dimensional examples used for demonstration of the proposed method. Design
points are visualized using solid black balls.

−6 −4 −2 0 2 4 5

−6

−4

−2

0

2

4
5

x1

x2

Nsim = 100

ED + excluded candidates

−6 −4 −2 0 2 4 5 x1

ψ-ranked candidates

−6 −4 −2 0 2 4 5 x1

screening dots

−6 −4 −2 0 2 4 5 x1

r

R

IS integration nodes via hann

0 20 40 60 80 100

Number of limit state evaluations (g (xxx) calls), Nsim

10−4

10−3

10−2

10−1

Pr
ob

ab
ili

ty
of

ev
en

t
T

,
ψ

cr
ti

te
ri

on .
ψ criterion

p(Nsim)
T (global)

p(Nsim)
T (localized)

p(Nsim)
T (rbf)

pT (exact)

Extension of ED (2-nearest neighbors classification) Estimation of probabilities (nearest neighbor surrogate)

Figure 6. The ”Four branch” problem. The complete evolution of all panels is available as Four Branch video.

limit state function reads

g (x1, x2) = min


3 + 0.1 (x1 − x2)2 − (x1 + x2)/

√
2

3 + 0.1 (x1 − x2)2 + (x1 + x2)/
√

2
x1 − x2 + 7/

√
2

x2 − x1 + 7/
√

2
(22)

This function can be also be viewed in the context of
practical ”assessment of existing structures”: there
are four distinct part of the failure set which are
signalling failure. They can be viewed as different
failure modes each of which can bring the structure
down. The failure event is defined as g(xxx) ≤ 0. In the
present definition, there are two pairs of design points:
two points when x1 = x2 = ±3

√
2/2 at a distance

β1,2 = 3 and another two when x1 = −x2 = ±7
√

2/4
at a distance β1,2 = 3.5. The exact result failure
probability is pF ≈ 2.222 · 10−3, and the proposed
global sensitivities read s2

F ,1 = s2
F ,2 = 0.5.

Figure 6 shows the four blue lines forming the fail-

ure surface. The associated Four Branch video demon-
strates the behavior of the proposed method by adding
points one by one.

The extension algorithm refines the boundary pro-
portionally to the probability density featured in the
ψ criterion. The consequence of this is that the classi-
fication close to the four remote intersections of failure
surfaces is not performed correctly for small designs.
While this is no problem for the global IS probability
estimation, which focuses on the high-density regions,
it is a source of erroneous estimation for the local IS.
As can be seen, the magenta dash-dot line in Fig. 6
represents wrong and unstable results, which are de-
graded due to the accentuation of the inaccurately
classified regions (heavily covered by the local IS in-
tegration nodes). The global IS applied to the same
binary surrogate classifier provides accurate and sta-
ble results for EDs as small as Nsim ≈ 80. The top
right panel in Fig. 6 shows that the corner regions are
not important for the global IS.
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Figure 7. The ”Wavy line” problem. The complete evolution of all panels is available as Wavy line video.
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Figure 8. The ”MetaBalls” problem. The complete evolution of all panels is available in the MetaBalls video.

We have examined the simplest Gaussian RBF-
based classifier to show to what extent the estimation
improves compared to the simple nearest neighbor
classification. Using the global IS estimation leads to
stable, almost exact results which are already in the
range of Nsim ∈ (20, 80), see the brown line in Fig. 6.
The improvement is due to the more accurate clas-

sification of the failure surface in the vicinity of the
four design points; the ”corners” were not classified
correctly neither by RBF nor by the binary surrogate.
The efficiency of the RBF classifier is as good as the
efficiency of the best methods known in the litera-
ture. Many existing sampling techniques, such as the
sequential importance sampling employed in [4], use
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Figure 9. Recorded histories of exploration and estimation for the ”Linear Failure Surface” problem in Eq. (23)
studied for Nvar = 2, 3, 4, 5 and 10 (rows). The left column reports histories of the ψ criterion and the estimated
p

(Nsim)
F . The right column reports the radial distances of ED points from the origin (empty circles), as well as

distances from the planar failure surface (small diamonds). The secondary vertical axis shows the number of failure
points. The complete evolution of ED extension in Nvar = 2 and 3 dimensions is shown in video 2D and video 3D.

too many limit state function calls, and good results
are obtained only when building a surrogate model.
We repeat again that the proposed algorithm achieves
almost the same efficiency; however, it does so using
only the categorical information about g(xxx), which
makes the proposed method very robust.

Figs. 7 and 8 show the behavior of the method
for other functions. The detailed description can be
found in [1], along with more examples posing other
challenges to the existing methods, which are elegantly
overcome by the proposed method.

6.1. Linear failure surface in higher
dimensions

The previous 2D examples revealed the robustness of
the algorithm regarding the complicated failure sur-
face and g(xxx) function values. What remains a ques-
tion is how the algorithm efficiency scales with di-
mension. To present a reasonable higher-dimensional
example relevant to many practical problems, we use

a compromise: a simple linear failure boundary (a
line, a plane, or generally a hyperplane). There is
no reason to make the linear failure surface rotated
in the space of input variables because the proposed
framework is rotationally invariant in Gaussian space.
Therefore, it suffices to make the limit state function
simply depend on the first dimension only

g (x1, x2, . . .) = β − x1. (23)

Such a problem has a trivial analytical solution: pF =
Φ(−β). We set β = 4.7534243 to achieve the failure
probability pF = 10−6, i.e., a number relevant for
”assessment of existing structures”.

Fig. 9 presents the results for Nvar = 2, 3, 4, 5 and
10 dimensions. The blue line in the left column is
the estimated amount of probability resolved by eval-
uation of the corresponding g(xxx) (ψ criterion), and
the red line plots the estimates of the failure proba-
bility. It is clear that the purely ”exploratory phase”
with the expanding search until the first failure is hit
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consumes increasingly more g(xxx) function evaluations
as the space dimension increases; compare the radial
distances of points from the origin plotted as empty
circles in the right column of Fig. 9, which are orga-
nized at individual distance levels. For Nvar = 10,
it takes about 500 g(xxx) function calls to hit the fail-
ure event and begin refining the (very large) failure
surface. Stabilization of the probability estimates ne-
cessitates very fine refinement of the failure surface,
which also consumes many function calls. The need
to spend higher numbers of points in the purely ex-
ploratory phase in higher dimensions is an inevitable
consequence of the fact that the numerical value of
g(xxx) cannot be used to orient the search, e.g., in the
direction of the negative gradient, as Subset Simula-
tion or methods building a smooth surrogate do. The
estimated pF for Nvar = 10 shows quite a serrated pro-
file, although the coefficient of variation is very small
due to the use of a high number nIS of integration
nodes. The reason is that the boundary approximated
via the Voronoï cells in the nearest neighbor classifica-
tion is also very serrated. Its extent is large, and the
refinement would necessitate very many additional
g (XXX) calls. One can also notice that the decrease in
ψ criterion is less rapid in high dimensions because
the volume of the space simply increases with the
space dimension. This is manifested via the increase
of the extent of the failure surface part with a high
Gaussian density. Apart from the radial distances
plotted via empty circles in the right column of Fig. 9,
we also plot the distance of points from the planar
failure surface as small diamonds (green and red fail-
ure points). Once the first failure event is hit, the
extension algorithm primarily selects the points to re-
fine the failure surface. However, as can be seen, their
distance from the origin is considerably greater than
the shortest distance of the plane β, which is marked
by the horizontal blue line. The complete evolution
of the refinement process is captured point-by-point
in individual frames of video 2D and video 3D.

The non-decreasing, maroon-colored line in the right
column of Fig. 9 shows that the proposed refinement
algorithm tends to the ratio nF/Nsim = 1/Nvar, which
is excellent in Nvar = 2 dimensions where almost
all limit state function evaluations refine the failure
surface from both sides, but less efficient in higher
dimensions in which increasingly more points are spent
on the exploration of new territories and a smaller
share is devoted to boundary refinement.

7. Conclusions
This paper briefly presents simple yet robust and
efficient methods for the sequential extension of exper-
imental design and estimation of failure probabilities
for computational models, which can be non-smooth,
or returns only a finite number of states or even have
blind spots for which there is no result at all.

The extension of experimental design balances the
gradual exploration of new territories by expanding

the covered region and refinement via the exploitation
of important regions. The balance is maintained by
maximizing the proposed simple ψ criterion which
expresses the approximate amount of probability be-
ing classified by any proposed candidate for extension.
The extension of the experimental design makes no as-
sumptions about the performance function and, there-
fore, is invariant with respect to its reparametrizations
and reformulations, which do not alter the failure do-
main shape & location, and the method is resistant
against noise and jumps.

The estimation task can be performed at any time
during the extension process by quickly analyzing
the point-wise information only. It uses standard
importance sampling applied to a surrogate model.

The proposed method needs no fine-tuning of pa-
rameters depending on the analyst, because there are
no such variables. The only freedom is in the density
of the initial exploration set and with the option of
refining it during the extension process. The method
can help in solving hard practical reliability problems
for which the existing methods fail due to their strong
assumptions about the performance function being
well-formulated and well-behaved.

Simple yet apt global sensitivity measures are pro-
posed, which can be obtained for any rare event type
as a by-product of the presented method.

The applicability of the methods has been demon-
strated for small to medium dimensions; high dimen-
sions (several tens to hundreds of independent input
variables) remain a challenge.
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