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Abstract. The shear strength of prestressed beam elements is of great interest with regard to
the evaluation of existing concrete bridges. Accompanying extensive experimental test series, the
adaptation and modification of existing models for the evaluation of the load-bearing capacity also
represents an important step. Against this background, considerations are made for the isolation of
critical influencing factors on the effective concrete compressive strength and quantified on the basis of
a numerical framework. Subsequently, a sensitivity analysis is performed on this basis to determine the
influence of individual parameters and their interaction. Taking into account the non-linear relationships
at the cross-section level and in the cracked compressive stress field in the web, the shear reinforcement
ratio and the strain in the longitudinal reinforcement are of major importance.
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fields.

1. Introduction
For the assessment of existing bridge structures and
with respect to special questions related to prestressed
concrete bridges, theoretical and experimental efforts
to evaluate the shear capacity have been increased
in the recent past [1–3]. In particular, characteristic
bearing mechanisms of prestressed continuous girders
with a low amount of shear reinforcement are con-
tinuously under discussion. From own experimental
investigations, which are briefly presented schemati-
cally in section 2, the question for the evaluation of
possible influencing factors on the effective concrete
compressive strength of the cracked compressive stress
field is developed and described by means of a numeri-
cal model, cf. section 3. Subsequently, the proportion
of the variance of the individual input variables in
the total variance of the response spectrum is evalu-
ated using a global sensitivity analysis [4] in section 4.
From this, dominant parameters and model-inherent
interactions can be derived. Section 5 discusses main
results and some influences of the numerical model
are evaluated. Existing approaches to consider the
phenomenon of compression softening together with
the presented results may be viewed from a new angle.
This procedure provides a valuable basis for possible
model modifications based on it.

2. Experimental Evidence
The aim of the experimental research is the systematic
illustration of the influence of a gradually reduced de-
gree of longitudinal reinforcement and the associated
effects on internal equilibrium. For this purpose, nine
prestressed beam elements are tested using the sub-
structure technique. Figure 1 illustrates the concept.

This method has already been deployed at the insti-
tute to study various aspects in regard to the shear
strength of prestressed beam elements [1, 5], while
the basic idea for testing detached subsystems has
already been used successfully before [6]. Including
digital image correlation and fibre-optic sensors along
longitudinal reinforcement and tendon axis, the exper-
imental results show that the force flow in prestressed
beams is subject to a highly statically indeterminate
interaction that adopts a static equilibrium depending
on communicating damage processes. In this way, the
shear capacity is not considered in an exposed manner,
but is to be classified with conformity of the stresses
and strains under all acting internal forces, whereby
in particular the mixed reinforced tension chord of re-
inforcing steel and tendon controls the cross-sectional
strain and dominance of individual load-bearing com-
ponents.

The analysis shows that even with yielding longi-
tudinal reinforcement under high bending moments
in field and support regions, the ultimate system ca-
pacity is determined by a shear failure as long as the
prestressing steel can provide the corresponding in-
crease in strain. The evaluation of the tension chord
deformation and the evolution of the cracked stress
field in the web prove the great importance of arching
actions in the description of the bearing behaviour of
prestressed beam elements. A comprehensive analysis
and discussion of experimental results will be pre-
sented in other publications and are not the subject
of this paper. The brief outline of the experiments
carried out is intended solely as a background and
forms the basis for the considerations set out below,
which can assist in evaluating the results and further
refining the model concepts.
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Figure 1. Experimental setup and focus of presented studies:
a) Substructure technique for investigating the shear strength of prestressed beam elements, based on the shear field
of a continuous beam between the point load in the span and the inner support. Reinforcement and tendons are
anchored in tension in the cut edges/load plates; b) Deformed system and internal forces acting on it. The push
cam profiling enables the transmission of shear forces in analogy to bridges in segmental construction. The fans of
the cracked compressive stress field are indicated in the field and support areas, a deflection takes place at tendon
axis. The effective web compressive strength, controlled by the reduction factor kc, is the focus of the presented
investigations. Relevant details related to this factor are explained in the following section 3; c) Qualitative profile
of bending moment and shear force in the tested beam element. The load is successively increased until a shear
failure occurs. Under increasing load and a considerably reduced degree of longitudinal reinforcement, plastic strains
result in the longitudinal reinforcement, which require a corresponding increase in strain in the tendons in order to
guarantee the equilibrium of the internal forces.
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3. Compression Softening
Approach

3.1. Background
Taking into account the test results, which show that
the system load-bearing behaviour of prestressed cross-
sections is still limited by the shear capacity despite
plastic tension chord deformation, and based on as-
sumptions of the plasticity theory for the prediction
of the shear strength, the effective concrete compres-
sive strength of the cracked stress field is of crucial
importance.

As stated in [7], the assumption of a shear force
bearing capacity derived from shear reinforcement is
always limited by the bearing capacity of the concrete
compression struts, which in turn depends on the ef-
fective concrete compressive strength and thus on the
general state of strain. As a result, in addition to the
shear reinforcement ratio, the longitudinal reinforce-
ment ratio and the longitudinal strain - coupled by
the load distribution and system slenderness - may
have a major influence on the shear force bearing ca-
pacity. The factor kc, see equations 4 and 5, thus
decides on the extent to which plasticity-theoretical
approaches can be used to describe the shear strength
of reinforced concrete beams.

For design purposes, the effective concrete compres-
sive strength is usually determined using constant
reduction factors, which is a simple, conservative esti-
mate. In the course of one’s own considerations, and
especially in the case of plastic chord deformation, it
is reasonable to explicitly take into account the actual
state of strain. Concrete girders, and in particular
prestressed systems, develop a varying strain over
beam height. The development of arching actions
and the deviation of the stress field at the tendon
axis cannot be represented in panel tests, which have
contributed significantly to the description of various
compression softening approaches [8–10]. Still, the
relations within the membrane element can be trans-
ferred to the beam web if an equivalent measure of
the longitudinal distortion can be formulated. Fol-
lowing the convention in the fib Model Code 2010
[11] or respectively the Modified Compression Field
Theory (MCFT) [9, 12], the measure of effective lon-
gitudinal strain is defined at the mid-depth of the
member. However, the member is not defined by the
cross-sectional contour, but must be understood as a
web (following a classical plasticity-theoretical cross-
sectional division) between compression and tension
chord. The longitudinal strain at half the height of
the inner lever arm of the chord forces may serve as a
clearer formulation here.

3.2. Numerical Model
For the weighted evaluation of dominant influencing
factors on the reduction factor kc and consequently
on the effective concrete compressive strength, various
assumptions are linked to a numerical model, the

solution of which is solved as an optimisation problem,
using sequential least squares [13, 14]. By iterating
the strain plane for a cross-section under an acting
bending moment and normal force, the lever arm of the
internal forces is given after integrating the concrete
compressive stresses, cf. figure 2. At the level of
zm/2, the average longitudinal strain state is obtained,
which is further supplemented by components caused
by shear, cf. equation 1, adopted from [7].
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Figure 2. Investigated cross section [mm], strain,
stress, inner forces and decisive strain εx,MN due to
bending and axial forces
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Figure 3. Core components of the optimisation prob-
lem: a) Mohr’s circle of strains in pure shear b) Re-
duction factor kc, introduced equation according to
[10, 15]

Since the proportion of longitudinal strain due to
shear εx,V is already formulated as a function of the
compressive strut angle θ, equation 1 is already part
of the constrained nonlinear optimisation. Based on
equilibrium conditions and an explicit consideration
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of the strains in longitudinal and shear reinforcement,
which limit the range of possible strut angles (for a
more detailed discussion, please refer to [7, 15]), the
correlated values of the compression strut inclination
and reduction factor kc, respectively the effective com-
pressive strength fce, can be determined, cf. equations
4 and 5. Assuming θ can evolve freely, taking into ac-
count its boundary conditions (derived from the yield
strength and tensile strength of the reinforcement),
the angle can be determined according to equation 2.
The iterative routine is obvious in linking equation 2
and figure 3.

After convergence the further steps are straight-
forward, and the principal strain ε1 as well as the
reduction factor kc are determined, cf. equations 3
and 4.

εx,V = V/2 · cot θ

2 (zs/zm · EsAs + zp/zm · EpAp) (1)

tan θ =

√
ρswfy

fce − ρswfy
(2)

ε1 = εx,MNV + (εx,MNV − εc2) · cot2 θ (3)

kc = 1
1.2 + 55 · ε1

≤ 0.65 (4)

fce = kc ·
(

30
fc

)1/3
· fc (5)

The model uses additional, generally accepted sim-
plifications, which are essentially due to the basic
outlines of plasticity theory and will not be the focus
of further attention here. Related to the proposed
model structure, some questions with respect to model
sensitivity arise:

• The principal strain εc2 is assumed to be constant at
-0.002. Is this, essentially empirically based, assump-
tion [9] valid or do implicitly considered influencing
factors falsify a generally valid statement?

• What are the consequences of an increased strain
level in the longitudinal reinforcement for estab-
lished models for predicting the shear strength in
prestressed beam elements? Is εx a sensitive param-
eter for the response surface Y?

• Are there significant interaction effects between dif-
ferent input parameters of the model?

4. Global Sensitivity Analysis
To address the above questions, the numerical model
from section 3.2 is subjected to a sensitivity analysis.
A global sensitivity analysis (GSA) distils the influence
of possible uncertainty of selected n input parameters
on the result of a model. Possible interactions of the
input values (so-called second order effects) can also
be determined by variance-based methods. In the

following Sobol’s Method [16, 17] enables a quantified
evaluation of these issues. Essential information on
the characteristics of the GSA approaches used in this
research is based on the considerations in [4], unless
otherwise referenced. The method does not require
an analytical model, but forms its correlation ratio on
the basis of a problem spectrum to be defined initially,
which contains all input parameters (which may be
subject to the GSA), their distribution function and
possible bounds. This data set is mapped into n
dimensions by means of low-discrepancy sampling
and then passed individually to the numerical model.
Critical aspects and details of the implementation are
described below.

4.1. Sobol’s sequence
Aiming for minimized discrepancy, generated se-
quences of parameter values should avoid holes and
clusters in the hypercube. This task is adequately
accomplished by Sobol’s sequences [16, 17]. In addi-
tion, Sobol’s sequence ensures order independence for
different input parameter axes. Without going into
further detail, this is enabled by its direction numbers
which are derived from distinct primitive polynomials
for every required parameter vector [18]. Sobol’ se-
quences are a quadrature rule and become unstable if
samples of a size that is not a power of 2 are used, or
if the first point is omitted, or if a sequence becomes
sparse [19]. This method thus offers a tried and tested
approach for evenly covering possible parameter con-
stellations, which essentially eliminates the danger
of unfavourable density of a parameter constellation.
Figure 4 shows an example of uniformly distributed
random coordinates and the spread using a Sobol’
sequence. The difference in the uniform coverage of
the area is obvious.
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Figure 4. Random samples and Sobol’ sequence in
two dimensions (27 = 128 samples)

The model study accounts for seven parameters,
which are listed in table 1 together with their assumed
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uniform distribution. Uniform distributions are as-
sumed for the parameter space because no specific
configuration with known uncertainty is to be exam-
ined, but an overall impression and overview of the
model sensitivity is to be given. The limit values of the
distributions are based on the test programme referred
to at the beginning or assumed as realistic limit values
when considering existing reinforced concrete bridges.
All parameters are part of the resistance side and are
included in the iteration of the initial strain plane
and/or subsequent iteration to determine the stress
and strain state in the web. In addition to the range of
the longitudinal reinforcement ratio, the lower limit of
which leads to plastic chord deformations in the cross-
section analysis, the shear reinforcement ratio is also
chosen relatively low with regard to the conditions in
existing prestressed concrete bridges. Taking into ac-
count the applied variation of the concrete compressive
strength, a bandwidth of about 0.7 to 4.0 times the
minimum shear reinforcement ratio ρw,min results for
the general case according to ρw,min = 0.16ḟctm/fyk
[20].

Only λ represents a component of the load side to
a certain extent, since the ratio of acting moment,
which is increased independently of the GSA for all
combinations of possible input values, and shear force,
which also has a share in εx (see equation 1), is con-
trolled via a variation of the shear slenderness. In
addition, the variation of the tendon slope influences
the effective shear force (after subtracting the ver-
tical component Vp = Pmt · sin αp) in the web and
ultimately the proportion εx,V.

Parameter Uniform distr. range
ρsl [%] [0.8, 2.0]
ρsw [%] [0.09, 0.36]
λ [-] [2.5 - 5.0]
εc2 [-] [-0.002, -0.001]
fc [MPa] [30.0, 50.0]
σp [MPa] [550.0, 600.0]
αp [deg] [1.0, 7.0]

Table 1. Input parameters for sensitivity analysis.

Variance-based methods are powerful in quantifying
the relative importance of input factors or groups. The
main drawback of variance-based methods is the cost
of the analysis, which, in the case of computationally
intensive models, can become prohibitive even when
using the approach described above. With Saltellis
extension of the Sobol’s sequence [17], which is used
within this scope, the resulting matrix has N (̇2n + 2)
rows, where n is the number of parameters. For a full
set of Sobol’ indices (S1, S2 & ST, cf. section 4.2) a
model with 7 factors requires to execute the model
at least 16000 times, taking N = 1000. Whether the
assumption for N was chosen sufficiently large can
be judged from the confidence intervals. This results
in over 200.000 model evaluations in total due to a

relatively finely chosen incremental bending moment
rise.

In a general case, the validity and robustness of a
composite indicator, in this case the reduction factor
kc may depend on a number of factors.
• The model chosen for estimating the measurement

error in the data
• The mechanism for including or excluding indicators

in the index; The choice of factors fed into a GSA is
subjective. Particularly in the case of comparatively
complex, non-linear numerical models, the model
character itself has a considerable influence on the
response surface Y. Theoretically, one could provide
the GSA with as many input parameters as pos-
sible, but this seems unnecessarily CPU-intensive.
Not pursued further here, but possible in the first
place, seems to be the gradual reduction of the in-
put parameters with subsequent evaluation of the
correlation coefficient to the results of a fully packed
analysis without static default values. Alternatively,
qualitative screening using the Morris method [21]
can be performed as the first step in model survey.

• The indicators preliminary treatment; In the in-
vestigations presented here, the limiting value 0.65
according to equation 4 is used in the framework
of the iteration. The GSA evaluation deliberately
excludes this criterion in order to take into account
possible influences caused by the asymptotic charac-
ter of the equation at low principal tensile strains.

• The type of normalization scheme applied to the
indicators to remove scale effects

• The amount of missing data and the imputation
algorithm; Under high bending moment, it is the-
oretically possible that the iteration of the strain
plane does not reach a stable equilibrium according
to the defined stress-strain relationships and limit
strains. This leads to a lack of the input value εx,MN
in the further iterative consideration of the condi-
tions for the web element, and to a non-response
bias depending on the error handling. This scenario
was prevented by previous comparative calculations
so to avoid inconvergent result data falsifying the
GSA.

4.2. Sobol’s Method
After running the numerical model for Sobol’s se-
quence, one gets an array that forms the so-called
response surface. Sobol’s method evaluates the part
of the total variance of the response that can be at-
tributed to input parameter Xn. The numerical imple-
mentation is based on the SALib package [22]. Three
measures can be obtained for each parameter:

• first order index S1: contribution (without interac-
tion) of a parameter to the response variance

• second order index S2: interaction of input param-
eters to the response variance
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• total effect index ST: total contribution (including
interaction) of a parameter to the response variance

A measure of sensitivity is to calculate the variance
of the conditional expectation V ar [E(Y |Xn)] referred
to the total variance of Y, V ar(Y ), cf. equation 6. In
other words, the total variance of the response Y that
can be attributed to input parameter Xn defines its
weight within the numerical model and, in a further
step, enables a better understanding of model-inherent
features beyond qualitative screening and, ultimately,
opens up initial starting points if a model modification
appears desirable.

S1n = V ar [E(Y |Xn = xn)]
V ar(Y ) (6)

Any numerical model is some sort of mapping input
parameters to output results. The following equation
7 shows the added parts that influence the result y,
namely scalar values, the sum of functions evaluated
for each parameter (modelling the effect of each indi-
vidual parameter) and the interaction of parameters.

y = f(x) =f0

+
Np∑

n=1p

fn (xn)

+
∑

1≤Np

fn,n′ (xn, xn′)

+ . . . + f1,2,...,Np

(
x1, . . . , xNp

)
(7)

The total variance of the response Y (the total of
all y-evaluations) can be decomposed into partial vari-
ances, attributing variability of the response Y to each
input parameter, including interactions. Different con-
ditional variances:

Dn = V ar [E (Y |Xn)] (8)

Variance on two conditions:

Dn,n′ = V ar [E (Y |Xn, Xn′)] − Dn − Dn′ (9)

The first order Sobol’ index S1n calculates the impact
of the input parameter Xn by estimating the partial
variance of Y explained by this parameter. It estimates
by how much the variance of the response is reduced,
on average, when the parameter Xn is fixed, i.e. it
measures the contribution of the parameter Xn to the
total variance of the response. The total effect index
for a parameter Xn is defined:

STn = Sn +
∑
n≤n′

Sn,n′ + . . . (10)

The total effect index represents the total contribu-
tion (including interactions) of a parameter Xn to
the response variance; it is obtained by summing all
first-order and higher-order effects involving the pa-
rameter Xn. Further input variables of the model

that are not included in the GSA, but are neverthe-
less to explicitly assume a variable character, require
a recalculation of the sensitivity indices for all Sobol’
samples. In the present case, this is the case for the
applied bending moment from external load. This
procedure is comparatively computationally intensive,
but it allows a view on a potentially variable prioriti-
sation of the parameters according to Table 1, which
should be quite common, especially for non-linear
model considerations.

5. Results and Discussion
The GSA shows which of the selected input parame-
ters have an influence on kc and which values would
have been sufficiently taken into account within the
scope of the investigations with the assumption of a
constant value, since no significant contribution to
the variance of the result is evident. The major fac-
tor is the transverse reinforcement ratio. It is the
most important influencing variable over the complete
variation of the moment acting on the cross-section.
This seems to be plausible with regard to equation 2.
Described from a phenomenological point of view, the
stirrup strain imposes a proportional transverse strain
on the concrete compression struts, which reduces the
effective concrete compressive strength. For low shear
reinforcement levels, this issue is particularly critical
because the small cross-sectional area mobilises high
strains early on for comparatively small forces after
shear cracking. Depending on the crack opening and
ductility of the reinforcement, rupture of the rein-
forcement may occur. Further questions arise in this
regard, which will not be discussed in detail here.

A model without parameter interaction leads to∑
ST = 1, which is obviously not the case here.

Under external bending moment of about 0.45 to
0.5 MNm, interesting dependencies between longitu-
dinal and shear reinforcement ratio are revealed, cf.
figure 5. The concrete compressive strength also ap-
pears to gain in importance in the meantime before
ST settles back down to the initial level. Figure 6
shows also a remarkable interaction between ρsw and
εc2 develop in this range. This intermediate effect is
due to the limiting conditions of the possible band-
width of permitted compression strut angles. After
exceeding the decompression stresses, small longitu-
dinal strains of the same order of magnitude as εc2
initially enter into the equations. As expected, the in-
fluence of the longitudinal strain rises under increasing
moment, while the shear reinforcement ratio, which
is still important, decreases significantly. A moment
of 0.9 MNm for the considered example cross-section
(figure 2) results in the longitudinal reinforcement
reaching its yield stress.

The high longitudinal strain εx,MNV becomes more
important for the iterative determination of the com-
pression strut angle and the principal strain ε1 under
increasing load. Against the background of high uti-
lization rates for bending and shear of many existing
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Figure 5. Individual parameter importance S1 and
total prioritisation ST affecting kc

concrete bridges, the question arises to what extend
the mostly constant factors in standards provided rep-
resent a reasonable assumption. Directly linked to this
is, of course, the question of an adequate formulation
of the effective concrete compressive strength or, at a
distance, the question of the fundamental capacity of
the model conception for shear strength discussed here.
The generally constant assumption of the principal
strain εc2 even proves to be a definite parameter to be
taken into account, largely independent of the acting
moment, if one considers modifying the numerical
model with respect to kc. The importance of a rea-
sonable assumption or parameterized formulation for
εc2 becomes clear when looking at figure 3. Selected
principal compressive strain and longitudinal strain εx
are of the same order of magnitude in absolute terms
and have an influence on the compression strut angle
according to their difference.

6. Conclusions
The paper presents a numerical model that allows
a closed-loop determination of the effective concrete
compressive strength in a beam web under shear load-
ing. Of further interest is the reduction factor kc used,
which is influenced to different degrees by different
parameters. In order to determine the individual influ-
ence of the parameters and possible model-determined
interaction effects, a GSA was carried out, which was
able to identify the shear reinforcement ratio and the
assumption of the principal strain εc2 in general, and

My [MNm] S2

Figure 6. S2 Indices: Input Parameter interaction
affecting kc

the longitudinal reinforcement ratio and correspond-
ing, ultimately plastic chord deformation under high
moment loading in particular as the decisive adjusting
screws.

In light of the experimental investigations, which
achieved high shear capacities despite plastic chord
deformation, a few questions arise:

• Do the empirically derived formulations for deter-
mining the reduction factor kc sufficiently approxi-
mate the conditions in a prestressed beam web or
are the model ideas of plasticity theory described
here (especially for cross-sectional segmentation)
not applicable?

• Which possibilities for a more refined estimation
of the main strain εc2 seem practicable and reason-
able?

These questions are part of further considerations,
which should be evaluated in the context of the duc-
tility of the reinforcement, which was already briefly
addressed in the course of the discussion of results.

List of symbols
kc Reduction factor for concrete compressive strength

due to transverse tensile strain [–]
εc Concrete strain [–]
εx,MN Axial concrete strain due to normal forces and

bending moment at half the height of the inner lever
arm [–]

εx,V Axial concrete strain due to shear [–]
ε1 Concrete principal tensile strain [–]
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ε2 Concrete principal compressive strain [–]
θ Compression strut angle [deg]
fce Effective concrete compressive strength [MPa]
fc Concrete compressive strength, derived from cylinder

tests [MPa]
ρsl Longitudinal reinforcement ratio, defined as ρsl =

Asl/(bw · d) [–]
ρsw Geometric shear reinforcement ratio, defined as ρsw =

asw/bw [–]
λ Shear slenderness, defines as λ = M/(V · d) [–]
zm Lever arm of inner forces [mm]
zs Lever arm between Fc and Fs [mm]
zp Lever arm between Fc and Fp [mm]
σc Concrete (compressive) stress [MPa]
σs Steel stress due to normal forces and bending moment

[MPa]
σp Prestress in tendons [MPa]
∆σp Increased tendon stress due to normal forces and

bending moment [MPa]
αp Tendon slope [deg]
F c Resultant inner compressive force [MN]
F t Resultant inner tension force as weighted sum of Fs

and Fp [MN]
V Shear force [MN]
Es Modulus of elasticity of longitudinal reinforcement

[MPa]
Ep Modulus of elasticity of prestress tendon strands

[MPA]
As Cross-sectional area of longitudinal reinforcement in

tension [m2]
Ap Cross-sectional area of prestressed tendons [m2]
S1 Sobol’s first order index - individual parameter con-

tribution to total response variance [–]
S2 Sobol’s second order index - contribution of parame-

ter interactions (higher-order effects) to total response
variance [–]

ST Sobol’s total index combines margins of S1 and S2
for each parameter [–]
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