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Abstract. Fractional calculus, i.e. the theory of derivatives and integrals of non-integer order, can
be efficiently used for the theoretical modelling of viscoelastic materials. Our research is focused on
the polyvinyl butyral which is used as an interlayer for the laminated glass. Polyvinyl butyral can
be classified as a viscoelastic material and the introduction of the fractional viscoelasticity seems to
be appropriate tool for its description. This paper briefly introduces the springpot element and its
connection into more complex theoretical models. We mainly consider the generalized Maxwell model in
its standard and fractional form and show their application by fitting the data obtained by experimental
analysis.

Keywords: Laminated glass, polymer interlayer, theory of viscoelasticity, fractional viscoelasticity,
springpot, generalized Maxwell model, fractional calculus, storage modulus.

1. Introduction
Laminated glass, see [1], is a composite material,
which consists of a solid glass plates (float, tough-
ened, tempered glass or their combination) and in-
terlayers made of polymers (mostly the polyvinyl bu-
tyral, which will be also considered in the following
text) or cast resins. The interlayer has primarily
the safety function, it improves the post-breakage
behaviour of the glass elements. It also ensures in-
teraction between the main load-bearing glass plates,
its effect is mostly important in the case of bend-
ing, when the interlayer directly affects the stiff-
ness of the cross section and is mostly stressed by
shear.

The polyvinyl butyral (PVB) type of interlayer
can be classified as a viscoelastic material [2]. Its
behaviour is somewhere between purely elastic and
purely viscous. The viscoelastic behaviour is time and
load-history dependent, phenomenon such as creep
and relaxation are significant. For the accurate de-
scription of the viscoelastic material we need to use
more complex theoretical models, while the ideal elas-
ticity and viscosity stand for the limit cases, see [3]
for broader description.

2. Viscoelasticity
The standard theory of viscoelasticity commonly uses
the theoretical models composed of elastic and viscous
elements (springs and dashpots). The fractional vis-
coelasticity, see [4], applies the principles of fractional
calculus and introduces another rheological element,
the springpot. However, the fractional calculus is not
discussed in detail here because it is out of scope of
this article and the interested reader is referred to [5].
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Figure 1. Rheological scheme of spring, springpot
and dashpot.

The linear spring (see Figure 1a) is a rheological
element, which represents ideally elastic behaviour
of the material. The constitutive law, also known as
Hooke’s law, has the following form:

σ(t) = Eε(t), (1)

where
σ stands for the stress,
ε for the strain,
E for Young’s modulus of elasticity.
The stress is a linear function of the strain.

The viscous damper (dashpot) On the other
hand, the viscous damper (dashpot) (see Figure 1c)
represents the model of ideally viscous fluid. The
stress is directly proportional to the strain rate (i.e. to
the first derivative of the strain). The constitutive
law, also known as Newton’s equation of viscosity, has
the following form:
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σ(t) = ηε̇(t), (2)

where
η stands for the coefficient of viscosity,
ε̇ the time derivative of the strain.

The springpot (see Figure 1b) then represents
a transition between the two cases mentioned above.
Fractional viscoelasticity, see [4], assumes the consti-
tutive law in the following form:

σ(t) = ξDαε(t), (3)

where
ξ and α are parameters of the springpot,
Dα denotes the α-th time derivative.
The point of fractional viscoelasticity is to assume
α as non-integer.

We have already mentioned that the ideal elastic-
ity and ideal viscosity stands for the limit cases of
viscoelastic behaviour, therefore we can define the
limit cases for the springpot parameters and consider
α only in the interval ⟨0, 1⟩.

When we introduce the characteristic time τc in the
following form:

τc = η

E
, (4)

Equation (3) can be rewritten as:

σ(t) = Eτα
c Dαε(t). (5)

The replacement of ξ by Eτα
c better illustrates the

physical meaning of the constant ξ in the limit cases.
For α = 0 we receive:

σ(t) = E
d0ε(t)

dt0 = Eε(t), (6)

describing purely elastic response, remind Equa-
tion (1). We see that in this limit the parameter
ξ is equal to the modulus of elasticity E and the be-
haviour of the springpot corresponds to the behaviour
of an elastic element. On the other hand, for α = 1
we receive:

σ(t) = Eτc
dε(t)

dt
= ηε̇(t). (7)

In this limit case the behaviour of the springpot cor-
responds to the behaviour of the viscous element (re-
mind Equation (2)), while the constant ξ become the
constant of viscosity η.

2.1. Relaxation modulus of springpot
The relaxation is the phenomenon where the stress
gradually decreases over time even if the strain re-
mains constant. On the other hand, the creep can
be explained as a phenomenon where the the strain
gradually increases over time while the stress remains
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Figure 2. Relaxation modulus of a springpot accord-
ing to different values of α.

constant, for the broader description of these phe-
nomena see [3]. In the following text we focus on
the relaxation mode only, because it can be more eas-
ily interpreted in connection with the results of our
experimental analysis.

Relaxation modulus of the material is defined as
the stress response to the Heaviside strain load:

ε(t) = H(t), (8)

unit-value strain load which is applied instantaneously
in time t = 0 and remains constant for times t > 0.

In the case of the springpot element we consider
the fractional derivative Dα as the Riemann-Liouville
type of derivative, see [6]. The resulting relaxation
modulus has the following form:

R(t) = E

Γ(1 − α)

(
t

τc

)−α

H(t), (9)

where
Γ denotes the Gamma function.

Figure 2 shows the relaxation modulus of a spring-
pot according to different values of α, while the dashed
lines represent the limit cases given by elastic and vis-
cous behaviour.

2.2. Springpot under harmonic load
As a part of our research the experimental analysis of
the laminated glass is provided as well. The samples
are loaded by a harmonic torque. Therefore we are
interested in the behaviour of theoretical models under
the harmonic load as well.

The prescribed strain load and the corresponding
stress response have the following forms:

ε∗(ω) = ε∗
0eiωt,

σ∗(ω) = σ∗
0eiωt,

(10)

where
ε∗

0 and σ∗
0 are the amplitudes of the harmonic strain

and stress in the complex plane,
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Figure 3. Rheological scheme of the Maxwell model
and the fractional Maxwell model.

e is the Euler constant,
i is the imaginary unit.
The complex modulus E∗ can now be defined as:

E∗(ω) = σ∗
0

ε∗
0

. (11)

If we separate the real part of the complex modulus,
we receive the storage modulus E′ which corresponds
to the elastic part of the response. On the other hand,
the imaginary part, the loss modulus E′′ represents
the viscous part of the response. In the following
text we focus on the storage modulus due to better
accuracy with which the storage modulus is obtained
from experiments.

The complex modulus of the springpot element is
written as:

E∗(ω) = E(iωτc)α. (12)
The storage modulus is then obtained by separating
the real part of the complex modulus as:

E′(ω) = Re(E∗) = E(ωτc)α cos
(

α
π

2

)
. (13)

2.3. Theoretical models
To improve the description of the viscoelastic be-
haviour, the rheological elements can be arranged
together in series or in parallel to create more accu-
rate models. The overview of some theoretical models
can be found for example in [7], while here we limit
attention to those, which seem to be appropriate for
the description of the PVB interlayer.

Maxwell cell is a serial connection of an elastic
spring and a viscous dashpot. By the replacement of
the viscous element with the springpot we obtain the
fractional Maxwell cell. Both rheological schemes with
the variable parameters of each element are shown in
Figure 3. The relaxation moduli of the Maxwell cell
and the fractional Maxwell cell are respectively:

R(t) = Ee−t/τcH(t), (14)

R(t) = EEα,1

(
−

(
t

τc

)α)
H(t), (15)

where
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Figure 4. Rheological scheme of the generalized
Maxwell model.
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Figure 5. Rheological scheme of the fractional
Maxwell chain.

Eα,1 is the Mittag-Leffler function.
For the limit case α = 1 it holds that E1,1(x) = ex,
see [8], and therefore Equation (14) and Equation (15)
become identical in this limit case.

The storage moduli of the Maxwell cell and the
fractional Maxwell cell are then:

E′(ω) = E
ω2τ2

c
ω2τ2

c + 1 , (16)

E′(ω) = E
(τcω)2α + (τcω)α cos (α π

2 )
(τcω)2α + 2(τcω)α cos (α π

2 ) + 1 . (17)

Generalized Maxwell model (also known as the
Maxwell chain) is the parallel connection of a spring
and N Maxwell cells, see Figure 4.

The fractional Maxwell chain is then obtained as
a parallel connection of a spring and N fractional
Maxwell cells, see the rheological scheme in Figure 5.
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Figure 6. Relaxation modulus of the Maxwell chain
compare to the number of cells.
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Figure 7. Fitting experimental data of G′ to 1-cell
Maxwell chain.

The parallel connection of the cells in the general-
ized model enables us to obtain the relaxation modulus
of the Maxwell (resp. the fractional Maxwell) chain
superpositionally. The same applies to the storage
modulus. The relaxation modulus and the storage
modulus of the generalized models have the following
form:

R(t) = E0 +
n∑

i=1
Ri, (18)

E′(t) = E0 +
n∑

i=1
E′

i , (19)

where
E0 is the Young modulus of elasticity of the spring,
Ri are the relaxation moduli,
E′

i the storage moduli of each of the Maxwell (resp.
the fractional Maxwell) cells.
It is obvious that the behaviour of these generalized

models depends on the number of the Maxwell (resp.
the fractional Maxwell) cells connected together. This
is illustrated in Figure 6 which shows the difference in
the relaxation modulus of a standard Maxwell chain
with 1, 3 and 5 connected Maxwell cells.
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Figure 8. Fitting experimental data of G′ to 3-cell
Maxwell chain.
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Figure 9. Fitting experimental data of G′ to 7-cell
Maxwell chain.

2.4. Validation of theoretical models
Each of the theoretical models has the finite amount
of unknown parameters (moduli of elasticity E, char-
acteristic times τc, viscosities η or the springpot pa-
rameters α). These parameters occur in analytical
equations prescribing the behaviour of the models, e.g.
the relaxation modulus.

For our research the data obtained by experiments
performed on laminated glass presented in [9] were
used. The validation of the theoretical models was pro-
vided by fitting the parameters of the storage modulus.
The Python optimization tool from SciPy was used
for fitting the parameters, this tool uses the method of
non-linear least squares to fit the analytical function
to experimental data. The results are displayed in the
following figures, where the blue dots illustrate the
experimentally obtained data while the red curve is
the fitted analytical solution.

Figure 7 shows the approximation by the 1-cell
Maxwell chain. However, the approximation is not
very accurate. To improve the accuracy we need to
add more Maxwell cells to the generalized model. The
increase of the number of Maxwell cells from 1 to 3 is
shown in Figure 8. The approximation is good on the
wider range of frequencies. As is shown in Figure 9, the
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Figure 10. Fitting experimental data of G′ to 1-cell
fractional Maxwell chain.
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Figure 11. Fitting experimental data of G′ to 2-cell
fractional Maxwell chain.

7-cells Maxwell chain approximates the experimental
data well in the whole measured frequency range. On
the other hand, the increase of the number of the cells
from 1 to 7 also significantly increases the number of
the unknown parameters that need to be fitted.

The approximation by the fractional Maxwell chain
is shown in Figures 10–12. Even for the 1-cell frac-
tional Maxwell chain (Figure 10) the accuracy of the
approximation is significantly better compare to stan-
dard 1-cell Maxwell chain (Figure 7). However, the
accuracy can also be improved by adding more frac-
tional Maxwell cells. Figure 11 shows approximation
by the 2-cells and Figure 12 the 3-cells fractional
Maxwell chain. In the last mentioned case we can talk
about almost perfect fit to the experimental data.

The fractional Maxwell chain shows one more sig-
nificant advantage. While the curve of the standard
Maxwell chain become horizontal on the edges of the
measured domain, the fractional Maxwell chain still
shows the growing trend of the curve. Therefore,
the fractional Maxwell chain might be used for data
extrapolation outside the experimentally measured
domain.

This section clearly shows the results that the frac-
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Figure 12. Fitting experimental data of G′ to 3-cell
fractional Maxwell chain.

tional Maxwell chain can provide better approxima-
tions of the experimental data in comparison to stan-
dard generalized Maxwell model. Also it can be used
for the data extrapolation for which the standard
Maxwell chain is not suitable. Therefore the use of
the fractional models might be beneficial despite their
disadvantages which lie in the need of the more diffi-
cult mathematical apparatus.

3. Conclusion
Fractional viscoelasticity seems to be an efficient tool
to describe the behaviour of a polyvinyl butyral, the
material of the interlayer of laminated glass. The prin-
ciples of fractional calculus are introduced together
with the springpot element. This rheological element
can be used in connections with springs or dashpots
to make more complex theoretical models. For our
applications, the generalized Maxwell chain models
presented in its standard and fractional forms are
sufficiently accurate and effective, particularly when
considering the approximation of the experimental
data.

Comparing both formulations, the fractional vis-
coelasticity requires a complex mathematical appara-
tus to calculate derivatives and integrals of non-integer
order. On the other hand, by the use of fractional
models the number of the fitted parameters may be
reduced in compare to standard viscoelastic models.
On top of that, it allows for extrapolation of data
outside the experimentally measured domain. There-
fore, the fractional model can be directly exploited
in fitting the experimentally measured master curve
very accurately adopting a few parameters only. This
smooth approximation can be in turn used in cali-
brating the Maxwell chain model typically adopted in
finite element simulations as implementation of the
fractional model in the framework of the finite element
method is still a subject of an ongoing research.

31



Barbora Hálková, Jaroslav Schmidt Acta Polytechnica CTU Proceedings

Acknowledgements
This publication was supported by the Czech Science
Foundation, the grant No. 22-15553S and by the Grant
Agency of the Czech Technical University in Prague, grant
No. SGS22/031/OHK1/1T/11.

References
[1] W. Laufs, A. Luible. Introduction on use of glass in

modern buildings. Tech. rep., EPFL, Laboratoire de la
construction métallique ICOM, 2003.

[2] M. Haldimann, A. Luible, M. Overend. Structural use
of glass, vol. 10 of Structural Engineering Documents.
Iabse, Zürich, 2008. ISBN 978-3-85748-119-2.
https://doi.org/10.2749/sed010

[3] M. Jirásek, J. Zeman. Přetváření a porušování
materiálů: dotvarování, plasticita, lom a poškození.
České vysoké učení technické v Praze, Prague, 2006.
ISBN 978-80-01-05064-4.

[4] R. C. Koeller. Applications of fractional calculus to
the theory of viscoelasticity. Journal of Applied
Mechanics 51(2):299–307, 1984.
https://doi.org/10.1115/1.3167616

[5] F. Mainardi, R. Gorenflo. Fractional calculus and
special functions, 2013. Lecture Notes On Mathematical
Physics.

[6] R. L. Graham, D. E. Knuth, O. Patashnik, S. Liu.
Concrete mathematics: a foundation for computer
science. Computers in Physics 3(5):106–107, 1989.
https://doi.org/10.1063/1.4822863

[7] B. Hálková. Viscoelastic description of polymer
interlayer of laminated glass. Bachelor’s thesis, České
vysoké učení technické v Praze, Prague, 2022. [2022-08-
15]. https://dspace.cvut.cz/handle/10467/102633

[8] R. Gorenflo, F. Mainardi, S. Rogosin. Mittag-leffler
function: properties and applications. In Volume 1
Basic Theory, pp. 269–296. De Gruyter, Berlin, Boston,
2019. https://doi.org/10.1515/9783110571622-011

[9] T. Hána, T. Janda, J. Schmidt, et al. Experimental and
numerical study of viscoelastic properties of polymeric
interlayers used for laminated glass: Determination of
material parameters. Materials 12(14):2241, 2019.
https://doi.org/10.3390/ma12142241

32

https://doi.org/10.2749/sed010
https://doi.org/10.1115/1.3167616
https://doi.org/10.1063/1.4822863
https://dspace.cvut.cz/handle/10467/102633
https://doi.org/10.1515/9783110571622-011
https://doi.org/10.3390/ma12142241

	Acta Polytechnica CTU Proceedings 40:27–32, 2023
	1 Introduction
	2 Viscoelasticity
	2.1 Relaxation modulus of springpot
	2.2 Springpot under harmonic load
	2.3 Theoretical models
	2.4 Validation of theoretical models

	3 Conclusion
	Acknowledgements
	References

