
https://doi.org/10.14311/APP.2023.41.0020
Acta Polytechnica CTU Proceedings 41:20–27, 2023 © 2023 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

POSSIBILITIES OF USING COMMERCIAL ELECTRONICS TO
MEASURE DRIVER PHYSIOLOGICAL FUNCTIONS IN A VEHICLE

SIMULATOR

David Lehet

Czech Technical University in Prague, Faculty of Transportation Sciences, Department of Vehicle Technology,
Konviktská 20, 110 00 Prague, Czech Republic
correspondence: David.Lehet@cvut.cz

Abstract. The aim of this paper is to explore the potential of using inexpensive, commercial
electronics such as a smartwatch or chest belt to measure human physiological functions while driving
in vehicle simulator, both to improve safety and to use these devices in other experiments to facilitate
their conduct and replace more complex laboratory equipment. In the first part of the paper, the signs
of stress and cognitive load through physiological functions are researched, then the possibilities of
measuring these signs are explored. This is followed by an experiment in which two commonly available
devices are compared in terms of accuracy and usefulness for measurement during the experiment.

Keywords: ECG, heart rate, vehicle safety, design of experiment, vehicle simulator.

1. Introduction
For the design of the vehicle, and in particular the
interaction of its systems with the driver, it is essential
that the systems are properly tested. One of the best
tools for this testing is a vehicle simulator, which
allows both standard and hazardous situations to be
simulated repeatedly in a safe environment and under
controlled conditions.

Another important part of the design process is the
ability to record objective data from the participants
in the experiment. One part of this objective data can
be the driver’s physiological functions, the evaluation
of which can be used to objectively assess their stress
and overall workload.

Traditionally, laboratory tools such as ECG or EEG
are used for these measurements. Although these in-
struments are very accurate, they carry several dis-
advantages. In particular, they are more complex to
evaluate and also introduce discomfort and thus noise
into the measurement.
The aim of this paper is therefore to explore the

possibility of using commercial electronics in the form
of a smartwatch or chest strap to measure the heart
rate of a participant in an experiment.

1.1. Physiological functions and their
measurement

This part of the paper describes choosen physiological
functions and how they could be measured.

1.2. EEG
EEG, or electroencephalography, captures the electri-
cal activity of the human brain [1].
To measure EEG, electrodes that sense electrical

activity must be placed on the head (surface of the
skull) of the person being measured. The number

of electrodes varies according to the specific EEG
application [2]. Yan et al. [3] conducted an experiment
in which they compared the accuracy using 16 and
63 electrodes. The results showed that the reduction
in accuracy when using only 16 electrodes is small,
which can be used in designing further experiments.

Much research has been done on the principles of
driver distraction monitoring using EEG. Of these,
for example, Lin et al. [4] found experimentally that
driver distraction correlates with increased frontal
theta and beta wave activity (types of brain activity
monitored by EEG).
Zhang et al. conducted research in which they

showed that EEG is useful for observing how a driver
notices various stimuli (for example, when interacting
with assistance systems). They conducted the experi-
ment in both a simulator and a real vehicle and note
that the EEG was more prone to inaccuracies in the
in-vehicle experiment [5].

Kumar et al. in their research used EEG to capture
both visual and cognitive distraction. As a result of
the measurements, the EEG was highly accurate at
measuring both types of distraction [6].
In recent years, there has been an increasing num-

ber of studies on this topic focusing on new ways of
processing data obtained by EEG, especially using
neural networks, for example [7–10].

1.3. ECG
Electrocardiography is another method that measures
the electrical signals generated by the human body, in
this case the signals produced by the heart. The basic
output is activity (electrical signal) over time. This
signal can then be used to calculate heart rate, heart
rate variability (the evolution of the time differences
between successive heartbeats), and possibly even
respiratory rate [8].
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The basic elements of the ECG curve are the P-
wave – a smaller deflection indicating depolarization
of the atria, the P-R interval – the time between the
first deflection of the P-wave and the first deflection of
the QRS complex – this represents depolarization of
the ventricles, the time difference between the peaks
of the R-waves represents the heart rate. The T-wave
represents atrial repolarization [11].
Electrodes are used to capture the ECG signal, as

in EEG, and in this case they are placed on the limbs
and chest of the subject [12]. Medical ECGs use 12
electrodes, while other devices (such as smartwatches)
make contact with the skin differently. In the case
of smartwatches, this is a single-lead ECG (e.g. con-
ducted through a circuit connection between the back
of the watch, the body of the person wearing the watch
and a finger placed on another part of the watch) [13].
ECG is more suitable for measuring driver stress, as
shown for example by Keshan et al. [14] when they
used ECG data to classify three levels of stress with a
success rate of 88.24%, detecting high levels of stress
with a success rate of 100% (naive Bayes classifier
with the difference in mean heart rate as a feature) or
98% (decision tree and eight different features).

Pourmohammadi and Maleki [15] in their research
compared EMG (electrical muscle activity) and ECG
in stress detection. Again, using ECG, they were able
to detect different levels of stress with high accuracy
(greater than 95%).

It can be seen that when using ECG, the heart rate
is used as one of the signs for measurement. Heart rate
variability is also used quite often. Therefore, if there
were a way to measure these variables without ECG
(for example, the aforementioned smart watches), this
would lead to a simplification of the experimental
process.

1.4. GSR
The principle of the GSR measurement is to apply
a weak and constant (undetectable to humans) voltage
to the skin and to observe how the skin conductivity
changes depending on the stimuli (changes due to
perspiration).

Sikder et al. [16] used GSR measurements to deter-
mine the cognitive load of students taking an online
exam. There was an attempt to asses stress based on
the GSR time domain during thirteen different tasks
with three different levels of stress.

In a research focusing on comparing cognitive load
measurement options, Tervonen et al. [17] describe
the capabilities of different wearable sensors and the
processing of data from them using different lengths
of data. Among other things, they conclude that
cognitive load can be detected from GSR but more
slowly than from ECG.
Borisov et al. [18] used GRS as one component

to monitor cognitive load using human physiological
manifestations.

A combination of the use of GSR and EEG was
proposed by Manikandan et al. [19]. They proposed
a system that monitors driver distraction based on
these two variables. The measured signal is processed
and divided into time and frequency domain. Accord-
ing to the authors, the proposed system is capable of
accurately measuring fatigue and auditory and visual
distraction.

The research shows that from the physiological sig-
nals it is possible to monitor distraction (EEG) as
well as stress and cognitive load (ECG, GSR). The
next section will focus on identifying the possibili-
ties of commercial sensors (smart watches and similar
devices) whose application would facilitate the mea-
surement process.
Advances in wearable electronics (miniaturization

of the necessary electronics to enable wearable com-
puting) could allow for easier measurement within an
experiment, mainly due to ease of use [20]. Today,
these electronics are capable of recording user data
in real time. The most important part of this sector
today is mainly smartwatches [21].

Another advantage of smartwatches would be within
the measurement of cognitive load, where they would
not add additional problems to the participant of the
experiment, such as ECG electrodes [21].

2. Material and methods
This part of the papes describes the experiment that
was carried out to identify capabilities of commerical
sensors.

2.1. Used sensors
Several devices were used for the measurements. It
was a vehicle simulator used for simulating driving in
a Superb III equipped with automatic transmission.
The scene used was a combination of an intramural
and extramural road, with a maximum speed of 90
km.h−1. Next was an ECG sensor – VLV-Scope device
(Faculty of biomedical engineering, CTU in Prague).
A two-lead ECG sensor was used as a reference for
the measurements. The electrodes were placed in the
subclavian wells. Next was Wahoo TickrX chest belt.
This was the first sensor used for comparison, it works
on the principle of electrodes with contact in the lower
chest area, so it is a simple ECG. The second sensor
compared was a sports watch with a pulse oximeter
function. The sensor is in the form of an elastic sleeve
on the thumb.

2.2. Pilot measurement
The aim of the pilot measurements was to see if it was
possible to measure the selected devices at all. For
this purpose, a run with four probands was carried
out and the data from these runs were subsequently
processed. Two methods were proposed for evaluation,
these were compared in the pilot measurement and
one of them was selected. Time synchronization was
achieved by simultaneous starting and stopping the
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Figure 1. Output of the ECG probe.

measuring devices.

Outputs of the sensors:

EG probe
The output of the ECG probe is a text file (see
Figure 1) that can be processed in software such
as MS Office Excel or Matlab. The output is
from a program that allows you to measure several
variables at once (in addition to the ECG, skin
resistance or muscle activity, for example). Since the
sensors required for this scan were not active during
the experiment, other items are unusable except for
the time trace and the ECG recording.

Chest strap
Unlike the ECG probe, the output of the chest strip
measurement is just a file containing a time trace and
an instantaneous heart rate reading (see Table 1).

Hr Time
0 2/19/2020 10:02:25 AM
115 2/19/2020 10:02:26 AM
115 2/19/2020 10:02:28 AM

Table 1. Chest strap output.

Pulse oximeter
The output of a pulse oximeter is similar to that of
a chest belt (Table 2).

Index HR SpO2 Motion Vibration
0 80 98 0 NEPRAVDA
1 80 98 0 NEPRAVDA
2 80 98 0 NEPRAVDA

Table 2. Chest strap output.

Again, this is a text file that contains the instanta-
neous heart rate data, labeled with a serial number.
As this is an oximeter, the data also includes a record
of blood oxygen saturation.

The first problem that had to be solved was the
processing of the ECG data. From the ECG recording,
the instantaneous heart rate can be calculated using
Equation 1.

HR = 60
R − R

(1)

Where the R−R term represents the time difference
of two consecutive R peaks. Since the frame rate of
the ECG probe is 1 kHz, one recording represents
1ms.

To calculate the time difference between the peaks,
it was necessary to localize the peaks in the signal.
For this, the findpeaks function included in Matlab
was used.

A plot of the raw data is in Figure 3 (x-axis is time,
y-axis is ECG signal strength).
After application of findpeaks some parts of

the ECG curve were wrongly labelled as peaks.
This shortcoming was corrected by applying the
minpeakprominence and minpeakdistance function
parameters. The first of these arguments modifies the
minimum difference that must exist between points
for a peak to be identified, and the second argument
modifies the minimum distance at which peaks are
identified. The value of the first argument was ex-
perimentally set to 15000. The value of the second
argument was easier to find because it had to roughly
correspond to the time between heartbeats. It was
set to 400.

The result is the identification of peaks on the ECG
curve, without false positives and without missing
them. The details of the curve are shown in the
Figure 2 through Figure 4.
After finding a procedure to correctly identify the

peaks, it was possible to calculate the instantaneous
heart rate from the ECG using the aforementioned
equation. The result is in the Figure 4. For compari-
son, data had to be resampled to the lowest common
sampling frequency.

Comparison of all three devices is in Figure 5.
Based on this data, a method could be selected

to compare the different devices. Two methods were
considered. The first method consisted of summing
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Figure 2. Raw ECG.

Figure 3. Identification of ECG peaks, MPP – 15 000, MPD – 400, detail 1.

Figure 4. Instantaneous heart rate calculated from ECG.
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Figure 5. Results of the pilot measurement.

Absolute
distance Chest strap Pulse oximeter

ID1 22111.0 11763.0
ID2 2177.1 1450.6
ID3 3484.6 1345.7
ID4 2542.2 3947.1

Table 3. Absolute distances of the assessed devices from the ECG.

the absolute distances of the measured heart rate of
the device under consideration from the reference (i.e.,
the ECG), according to Equation 2.

HRdistance =
numberofrecords∑

i=1

∣∣HRreference(i) − HRdevice(i)
∣∣ (2)

In Matlab this function was implemented as:

ID(:,4)=abs(ID(:,1)-ID(:,2));
Distance = sum(ID (:,4));

Column 4 contained the calculated data, columns 1
and 2 contained the ECG record and the device under
assessment. The result was stored in the variable
Distance.

The results of this method for the 4 pilot measure-
ments are shown in the Table 3.

This method takes into account the entire measure-
ment process, the closer the sensor is to the standard,
the lower the values become. The disadvantage is the
poor comparability between different measurements,
mainly because the value will be higher the longer
the measurement itself. The results are also not very
intuitive to look at. The advantage is then taking into
account the magnitude of the error with which the
sensor is measuring.

The second proposed method involves calculating
what percentage of the measured values are from
a certain distance from the standard. In Matlab,
the calculation was implemented as follows:
for i=1:length(ID)
if ID(i,2)>((ID(i,1)*0.9)) &&
ID(i,2)<((ID(i,1)*1.1))
ID(i,8)=1;
else ID(i,8)=0;
end
end
KPI_10_Pas=(sum(ID (:,8))/length(ID))*100

The values 0.9 and 1.1 represent the distance from
the standard, in this case 10%, at which the sensor
must be located. The method was tested for two
different distances, 10% and 15%. The value of 10%
was chosen based on the “American National Standard
of Cardiac monitors, heart rate meters, and alarms”
and the value of 15% was chosen as an additional
value [22].

If the checked value of the instantaneous heart rate
was within the permissible distance, it was marked
as 1, otherwise as 0. After checking the entire record,
the data vector was summed and the proportion of
records that were sufficiently accurate was calculated.
The proportion is expressed as a percentage.

The results for all four measurements are shown in
the Table 4.
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Chest strap Pulse oximeter
10% 15% Difference 10% 15% Difference

ID1 39.06 52.03 12.97 24.77 46.53 21.76
ID2 82.02 90.35 8.33 78.51 94.74 16.23
ID3 60.70 71.14 10.44 69.65 87.56 17.91
ID4 63.61 84.59 20.98 41.64 63.93 22.29

Table 4. Comparison of two parameters for evaluating sensor accuracy.

First measurement Second measurement

ID Strap
[%]

Oxi
[%]

Strap
[%]

Oxi
[%]

1 57.77 73.65 67.3 63.87
2 66.5 81.55 0.39 59.38
3 60.8 57.6 70.64 62.84
4 54.51 63.53 53.31 60.66
5 42.72 16.02 89.04 0.68
6 75 75.55 18.25 65.87
7 69.77 79.07 87.18 52.56
8 75.97 82.47 16.39 63.93
9 50.54 42.93 0.76 50
10 69.68 73.4 8.92 78.57
Mean
values 62.326 64.577 41.218 55.836

Standard
deviation 10.40 19.94 34.03 19.80

Table 5. Measurement results.

It is clear from the table that the assessed de-
vices are accurate enough to be assessed for dis-
tances from the reference signal (0.9−EKG_reference,
1.1−EKG_reference) (the intervals are open).

Comparing the two methods, it is clear that al-
though the second method does not reflect the mag-
nitude of the error (it does not distinguish whether
the sensor is off by 1 or 50 beats), it is significantly
easier to interpret. Moreover, the two methods are
consistent in their results. Therefore, the method
based on the distance from the reference signal was
chosen for further processing.

3. Results
For the final comparison, a total of 20 runs were
measured using 10 probands, with each proband com-
pleting 2 runs. Both genders and all somatotypes
were represented in the measurements. Measurements
were processed using the procedures described above.
The results are presented in the Table 5.

The interpretation of the results is complicated by
the fact that the chest belt, although more accurate
(the highest accuracy of all measurements was achieved
by the belt – 89.04%), suffered from signal dropouts,
which are marked in red in the table.

The most accurate result of the pulse oximeter was
an accuracy of 82.47%. Interestingly, when comparing
measurements in which the chest belt did not expe-

rience signal dropouts, the average values for both
sensors are similar.

For illustration, the best results of both sensors are
presented in Figures 6 and 7 and their strengths and
weaknesses are described on the measurements.

Figure 6 shows the aforementioned best measure-
ment using a chest strap. However, it can also be seen
here that the belt is slower than the reference ECG in
responding to changes in heart rate, and some sharp
fluctuations are not detected at all. In this measure-
ment, the pulse oximeter readings were very poor, but
this was not due to failure.
Figure 7 shows the best pulse oximeter measure-

ment. It can be seen that although the pulse dynamics
are less well tracked by the oximeter than by the chest
belt, the tracking of the overall trend is quite good.

4. Conclusion and future work
In this article, two commonly available sensors –
a chest belt and a pulse oximeter in the form of a
watch – have been selected for a comparison of usage
of common commercial sensors for monitoring driver
during a test in a vehicle simulator. Using pilot mea-
surements, a suitable methodology was designed and
selected to evaluate their accuracy against a reference
signal in the form of a two-lead ECG.

From the measurements it is clear that while both
devices are capable of accurate enough measurement
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Figure 6. Measurement, ID5_2.

Figure 7. Measurement ID 8_1.

to be used during experiments, the chest strap is
capable of the more accurate measurement. This is
to be expected as the technology used by its sensors
is more accurate than the photoplethysmography on
which the pulse oximeter is based. Slower reactions of
the oximeter show that it is more suited for long term
measurement, while better dynamics of the chest strap
make it useful for measuring driver during stressful
events.

However, the ergonomics of the measurement com-
plicate the choice of a suitable device. For the partici-
pant in the experiment, it is obviously better if he or
she just puts on a smartwatch instead of a chest strap.
However, both options are an improvement against
ECG electrodes.
Further research in this direction should focus on

collecting a larger sample of data using the described

ones, on which the results of the measurement could
be statistically verified. Another weakness of the
experiment was imperfect way of synchronizing the
measuring devices. Although it was sufficient for
a proof of concept such as this, subsequent experiment
should use more precise method. Another part of the
experiment that should be perfected in subsequent
iterations is the problem of sampling. Each device
had a different sampling rate and even though it was
again deemed sufficient for this experiment, devices
with higher and more similar sampling rate should be
chosen next time.

It must also be kept in mind that the commercial
electron field is rapidly evolving, testing should be
repeated periodically using newer equipment but the
same (but updated) methodology.
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