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Abstract. This contribution deals with an asynchronous direct time integration of the finite-element
model. The proposed method is applied to the phenomenon of wave propagation through an elastic
linear continuum. The numerical model is partitioned into individual subdomains using the domain
decomposition method by means of localized Lagrange multipliers. For each subdomain, different time
discretizations are used. No restrictions for relation between subdomain’s time steps are imposed. The
coupling of the subdomains is forced by an acceleration continuity condition. Additionally, we use the
a posteriori technique to also provide the displacement and velocity continuity at the interfaces, and
hence we obtain exact continuity of all three kinematic fields. The proposed method is experimentally
validated using the modified SHPB (split Hopkinson pressure bar) setup.
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1. Introduction
The problem of asynchronous integration has been

addressed by many authors throughout the second
half of the last century [1, 2]. These methods were not
robust enough and lacked the required accuracy or
were unstable [3]. We consider the robust and accurate
methods to be those of the present day, such as the
following [4–9]. However, even these new methods
have drawbacks. The most common ones include:
overly large systems of equations, the necessity of
integer ratio of time steps of adjacent subdomains,
the necessity of having common time levels where
the solution of the whole model must be determined,
etc. The method presented below eliminates these
shortcomings and, in addition, offers the possibility
of guaranteeing the continuity of the displacement,
velocity and acceleration field at the interfaces.

2. Methods
Both strong and weak formulations of the domain-

decomposed problem are introduced.

2.1. Strong formulation
We recall classical problem of linear elasto-dynamics

[10]:

div σ + b = ρü on Ω × Υ ,

σ = C : ε ,

ε = 1
2

[
(grad u)T + grad u

]
,

u = u0(x, t = 0) on Ω ,

u̇(x, t = 0) = u̇0 on Ω ,

u = û on ΓD ,

n · σ = t̂ on ΓN .

(1)

where σ(x, t) and ε(x, t) are the stress and strain ten-
sor, respectively. The scalar function ρ(x) represents
the mass density, vector functions b(x) and u(x, t)
have the meaning of the intensity of the volume forces
and the displacement field, respectively. The 4th or-
der tensor of elasticity is given by C(x). Further, u0
and u̇0 are the initial displacement an initial velocity
fields, respectively. Displacement at the boundary ΓD
is given by û and t̂ is known traction at the boundary
ΓN. The symbol n represents the outward surface
normal unit vector and x ∈ Ω is the position of the
material point, and t is the time. Finally, Ω refers to
the spatial domain of interest and Υ represents the
the time domain of interest. The dot superscript has
the meaning of the time derivative.

Furthermore we assume that the region Ω is com-
posed of ns sub-domains Ωs, s = 1 . . . ns (see Figure 1).
At the interface ΓI between subdomains we enforce
the condition of the continuity of the displacement
field

us(x) = uI(x) on ΓI ∀s , (2)

where uI(x) stands for the displacement of the inter-
face. Note, that further, after the discretization of the
weak problem, we use the second time derivative of
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Figure 1. Arbitrary part of the system Ω divided
into subdomanins Ωs connected with i-th interface
ΓI.

(2) so the acceleration continuity is actually dictated,
see (6).

2.2. Weak formulation
According to the Hamilton’s principle [11] we search

for the stationary solution of

δH
(
u, uI, ℓ

)
= δHfree (u) + δWI

(
u, uI, ℓ

)
, (3)

over time interval [0, T ], where δHfree consists of the
virtual kinetic energy and potential of the system and
of the virtual work done by external loads. The virtual
work of the interface δWI can be expressed as

δWI
(
u, uI, ℓ

)
= δ

ni∑
i=1

ni
s∑

s=1

∫
ΓI

[
ℓs(us − uI

i)
]

dΓ , (4)

where us and uI
s are the displacements of the s-th

subdomain and of the i-th interface, respectively (see
Figure 1). The ℓs stands for the Lagrange multiplier
field of the s -th subdomain. The whole system con-
sists of ni interfaces and of ns subdomains. The i-th
interface is connected to ni

s of subdomains. The s-th
subdomain is connected with ns

i interfaces.

2.3. Spatial discretization
Using classical spatial discretization by means of

finite elements, one obtains the system of governing
equations in the form

Mü + Ku = f − Bλ, (5)

BT ü − L üI = 0, (6)
LT λ = 0, (7)

i.e. Equation of motion, Kinematic interface con-
straints and Interface equilibrium condition, respec-
tively, where M, K, are the mass and stiffness matri-
ces, f is the load vector, B, L are the matrices of the
connectivity [12], λ is the vector of localized Lagrange
multipliers and uI it the interface displacement. Re-
sulting from the existence of individual subdomains,
matrices and vectors have block-diagonal and block
form respectively, where each block represents one
subdomain.

2.4. Isolation of the interface problem
We will demonstrate that the λ and üI unknowns

related to the i-th interface can be expressed explic-
itly from the knowledge of the interface solution of
connected ni

s subdomains, i.e. from the knowledge of
u on ΓI.

Now, assume the problem of two subdomains con-
nected via one interface. Using equations (5)–(7), one
can extract the problem of this interface asBT

1 M−1
1 B1 0 L1

0 BT
2 M−1

2 B2 L2

L1T L2T 0

 L1λ1
L2λ2

üI

 =

BT
1 ˜̈u1

BT
2 ˜̈u2
0

 ,

(8)

where ˜̈u is the acceleration predictor defined as

˜̈u = M−1(f − Ku) = ü + M−1Bλ . (9)

Finally, unknowns of the system (8) are expressed as

üI = MI−1 f I , λs = Mλs
−1 fλs , (10)

where s = 1 . . . 2 and

MI =
2∑

s=1

[
LsT (

BT
s M−1

s Bs

)−1 Ls
]

,

f I =
2∑

s=1

[
LsT

(
Bi

s

TM−1
s Bi

s

)−1
Bi

s

T ˜̈us

]
,

Mλs =
(
BT

s M−1
s Bs

)−1
,

fλs = BT
s

˜̈us − LsüI .

(11)

are the interface mass matrix, interface load, boundary
mass matrix and boundary load, respectively.

2.5. Temporal discretization
Since the proposed asynchronous time scheme can

be combined with arbitrary method of discretiza-
tion [9], we present only the most simple case of central
difference method [10]

un+1 = un + ∆t u̇n + ∆t2

2 ün ,

u̇n+1 = u̇n + ∆t

2
(
ün + ün+1)

.

(12)

To obtain the acceleration ün+1 one has to solve the
system of equations (5)–(7) in time tn+1. Stable [8]
interface temporal discretization is given by

(u̇I)n+x1 = (u̇I)n + ∆t

2
(
(üI)n + (üI)n+1)

,

(uI)n+1 = (uI)n + ∆t (u̇I)n+1 .

(13)

2.6. The asynchronous time integration
Conventionally, whole domain is computed with

one globally determined time step. In the case of
asynchronous integration, each subdomain has its own
time step.
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Figure 2. The equality of the i-th interface solution
assuming whole subdomains Ωs vs. interface regions
ΩRs only
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Figure 3. Initial state of the algorithm

2.6.1. Initialization of interface regions
By interface region ΩRi

s
we mean the area of the

subdomain s affected by the propagating wave from
the interface i during at least two critical steps of
this area ∆tCRi

s
. Assume subdomains Ω1 and Ω2

connected via interface ΓI. Further assume that we
know the solution of given interface at time level t.
Then, because of the finite speed of wave, we can
compute the solution of the interface ΓI at time level
t + ∆tC from reduced system ΩR1 − ΓI − ΩR2 instead
of assuming full problem Ω1 − ΓI − Ω2 (see Figure 2).

By the substitution u = RT ur to (5)–(7) we ob-
tain formally same system of equations, however, for
reduced problem on interface regions. In the system,
new objects appear

Kr = RKRT , Mr = RMRT ,

f r = Rf , Br = RB,
(14)

which are the interface region matrices and vectors.

2.6.2. Algorithm
We have the problem of two subdomains Ω1 and

Ω2 with the interface ΓI (see Figure 3). The blue-
highlighted line stands for the already known solution
(note, that the last known solution of the interface
exists at time level tn

1 ). Our challenge is to obtain the
solution of Ω2 at tn+1

2 . Actual interface time step has
the value of ∆tI = tn+1

2 − tn
1 .

We propose the following algorithm:

ρ 2 = 1 kg m-3, E 2 = 2.25 Paρ 1 = 1 kg m-3, E 1 = 1 Pa

0 L = 1 m

E1 = 1 Pa E2 = 2.25 Pa

1 2 3 4 5

Δh = 0.01 m

 (t) = 1 Paσ

Figure 4. Bar setup with linearly varying Young
modulus

(1.) Solve the interface in time tn+1
2

(a) (ur)n+1 = (ur)n + ∆tI (u̇r)n + ∆tI 2

2 (ür)n,

(b) (˜̈ur)n+1 = Mr−1
((

fr)n+1 − Kr (ur
)n+1

)
,

(c) (üI)n+1 = MI−1 (f I)n+1,
(d) (u̇I)n+1 = (u̇I)n + ∆tI

2

((
üI

)
n +

(
üI

)
n+1

)
,

(e) (uI)n+1 = (uI)n + ∆tI (u̇I)n+1.

(2.) Complete the solution of ΩR1 in time tn+1
2

(a) (λ1)n+1 = Mλ1
1

−1
(

BrT
1 (˜̈ur

1)n+1 − L1(üI)n+1
)

,
(b) (ür

1)n+1 = (˜̈ur
1)n+1 − Mr

1
−1Br

1(λ1)n+1,
(c) (u̇)n+1 = (u̇)n + ∆tI

2

(
(ü)n + (ü)n+1

)
,

(d) Correct {ur, u̇r}n+1
1 to satisfy (6) and its time deriva-

tive respectively.

(3.) Solve free subdomain Ω2 in time tn+1
2

(a) un+1
2 = un

2 + ∆t2 u̇n
2 + ∆(t2)2

2 ün
2 ,

(b) ˜̈un+1
2 = M−1(fn+1

2 − K2 un+1
2 ),

(c) rewrite ˜̈un+1
2 → ün+1

2 with respect to BT
2 ün+1

2 −
L2 (üI)n+1 = 0,

(d) u̇n+1
2 = u̇n

2 + ∆t2
2

(
ün

2 + ün+1
2

)
,

(e) Correct {un+1
2 , u̇n+1

2 } to satisfy (6) and its time deriva-
tive respectively.

(f) Reset {ur, u̇r, ür}n+1
2 = R2{u, u̇, ü}n+1

2 .

Depending on real further time discretization, the
algorithm is repeated or alternates between both sub-
domains. The computation ends once each of the
subdomains has reached the final time tend.

3. Numerical and experimental
validation

Wave propagation is investigated through the lin-
early graded material (1D formulation). Furthermore,
the impact of 3 thin rods is simulated (2D axisymmet-
ric formulation) and the results are compared with
experimental outputs of OHPB setup.

Further in the plots, the conventional term stands
for nondecomposed model with single globally deter-
mined time step. The term asynchronous stands for
the proposed method. Computational time step is
further always set as the half of the critical time step
for each subdomain individually.

3.1. Graded material (1D)
The bar with linearly changing Young modulus is

loaded by rectangular pulse of 1 Pa (see Figure 4).
The bar is divided into 5 equaly sized subdomains.
Elements size is set to ∆h = 0.01 m. The stress at time
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Bar Impact velocity Length Diameter Material Density Young mod. Poisson
no. [ms−1] [mm] [mm] ρ [kgm−3] E [GPa] ratio ν [-]
1. 15.2 1750 20 PMMA 1180 5 0.37
2. 0 796 20 Steel 7850 210 0.3
3. 0 1600 20 Al 2806 72 0.334

Table 1. Initial velocities and parameters of the bars used in the experimental setup

0 0.2 0.4 0.6 0.8 1
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Figure 5. Propagated stress pulse at time t = 0.75 s
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Figure 6. The scheme of used Open Hopkinson pressure bar setup
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Figure 7. The axial displacement u1 at bar interfaces

t = 0.75 s is plotted in Figure 5. Spurious oscillations
around the analytical solution are caused by the use of
a noncritical computational time step ∆ts < 0.5 ∆tC

s .

3.2. Experiment (2D axisymmetry)
The setup consists of 3 aligned bars of various mate-

rials (see Table 1 and Figure 6). The first bar made
from polymethylmethacrylate (PMMA) has an initial
velocity that simulates the impact. The second bar is
made of steel and the third bar is made of aluminum
alloy EN-AW-7075-T6.

In case of the asynchronous integrator each bar
refers to one subdomain, that is, 3 subdomains and 2
interfaces in total are defined. The length of the edge
of the 2D axisymmetric square element is set to the
value of ∼ 1.6 mm. The computational time step is
set to the half of the critical one.

To maximize the credibility of contact behavior,
only the longitudinal degrees of freedom (perpendicu-
lar to the interface) are permanently coupled. More-
over, only the experimental time window when all
bars are in the contact is considered (i.e. ≈ 1 ms).

3.2.1. Displacement of the interfaces and
strain ε11 response

The displacement of both interfaces (PMMA-Steel
and Steel-Al) is plotted (see Figure 7). One can clearly
see that bars are in contact for the time period of
1.2 m s, so the numerical output can be directly com-
pared with experimental results up to this time.
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Figure 8. Strain ε11 response close to the location of
the 2nd interface

The history of axial strain ε11 on the bar’s free
surface measured at distance x = 2.746 m, close to
the location of the 2nd interface, is plotted (see Fig-
ure 8). We can see sufficient agreement between both
time evolutions during time period of the interest
(0–1.2 m s).

3.2.2. Energy balance and dissipation
Finally, the energy balance is investigated. The

percentage loss of total energy given by the initial
velocity of the PMMA bar (see Figure 9) and interface
energy (see Figure 9) is shown. Although the term
(4) for interface energy has an exactly zero value, the
system is dissipating energy during the very beginning
of the simulation. This means, that the energy balance
distortion is present in the potential and kinetic energy
of the bars.

4. Conclusions
We found the asynchronous scheme useful especially

in cases of existence of multiple material region within
the model. The scheme presented is suitable for solv-
ing various problems of physics, e.g., fluid structure
interaction, where the method used for decomposi-
tion [13, 14] has already been used successfully. The
weakness of the algorithm is the distortion of the en-
ergy balance of the subdomains, which is, however,
sufficiently small.
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