
ORIGINAL RESEARCH 
 

30 
 

SUMMARY OF ALGORITHMIC FRAGMENTS FOR STATISTICAL 

IDENTIFICATION OF MARKERS FROM A SET OF SPECTRAL 

COURSES 

 
ek1 2, Petr Bouchal3,4 4 4 

avel Tom k5 

 
1Department of Medical Biophysics, Faculty of Medicine in Hradec Kralove,  

Charles University in Prague, Czech Republic 
 

2Department of Applied Mathematics,  
University of South Bohemia, Czech Republic  

 
3Department of Biochemistry, Faculty of Science,  

Masaryk University, Czech Republic 
 

4Regional Centre for Applied Molecular Oncology,  
Masaryk Memorial Cancer Institute, Czech Republic 

 
5Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove,  

Charles University in Prague, Czech Republic 
 

Abstract 
A brief introduction of algorithms for the statistical identification of markers from a set of spectral courses is the topic 
of our paper. Partial results, demonstrated by pictures, are very promising. Therefore, our next effort will be directed at 
the construction of the 1st prototype of some semi-commercial software for the identification of markers from a set of 
spectral courses.  
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A (dependence) biomarker, or (dependence) biologi-
cal marker, is a (dependence) indicator of a biological 
state. It is a characteristic that is objectively measured 
and evaluated as a (dependence) indicator of normal 
biological processes, pathogenic processes, or pharma-
cologic (dependence) responses to a therapeutic inter-
vention. It is used in many scientific fields. See e.g. 
Wikipedia. 

The rapid development of genomic and proteomic 
methods led to an enormous increase in experimental 
data. To be able to extract answers to important ques-

tions from these data, it is necessary to find an effective 
bio-statistical method for their processing. The applica-
tion of advanced methodologies is necessary to give us 
more detailed, structured information. 
 
 
The model “A set of multiple li-

 
 
The beginning of the algorithmic study described be-
low lay in finding a reality so that statisticians were 
able to derive a test criterion 
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for the standard statistical model called the “Distur-
bance-Related Sets of Regression Equations” 
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(or briefly y X e ) for the null hypothesis 
 

0 :H rR (3) 
 
where the form of the ( )J KR matrix of constants and 

the form of the ( 1)Jr vector of constants in relation (3) 

concretize the null hypothesis 0H . Dimension K  of 
regression vector  is given as a sum of single regres-
sion vectors 1 , 2 , … , M , i.e. 1( 1)M

i iK K . 
The covariance matrix  of the joint disturbance 
vector e  is given by I  and so 1 1 I  
[12], [6]. 

Of importance is, that it is possible to test arbitrary 
linear mutual relations among particular multiple linear 
regressions in (2) with the help of the test criterion (1). 
 
The model known as “A set of orthogonal poly-
nomial regressions” 
 

It is necessary to approach model (2) more narrowly 
for our purpose (namely) “the statistical identification 
of markers from a set of spectral courses”. Every mul-
tiple linear regression in model (2) is interpreted as an 
orthogonal polynomial regression describing one ap-
propriate spectral course. So, we can test (with the help 
of (3) appropriately modified) arbitrary linear mutual 
relations among particular spectral courses [14], [17]. 

 
The definition matrix 
 

When we summarize the values of regression func-
tions (polynomial regressions) into the vector 
 

1 2( ) ( ( ), ( ), , ( )) 'Mx x x x (4) 
 

we can formally transcribe a null hypothesis (3) into 
the form 

 

0 : ( ) ( )H x xk r  
 

where an abscissa x  is the arbitrary value of used 
spectral independent variable and 
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is the so called definition matrix [17]. Definition matrix 
k  expresses generally all conceivable linear mutual 
relations among regression functions (4). 
 
A highly effective algorithm for orthogonalization 
 
Computational practice showed that the currently used 
Gram-Schmidt’s polynomials [5], [19], are not able to 
realize satisfactory measure of orthogonality. For our 
purpose – the polynomial approximation of a set of 
spectral courses – we had to use special, outstandingly 
efficient algorithms [18], [1], [10], [7], [8], [9]. 
 
Identification of markers by simultaneous tests in a 
set of quantifying dependences 
 

As substantial limitation while using the “Test of 
the Hypothesis That One Group Of Dependences is 
Consistent with Another Group of Dependences” [17] 
is that the null hypothesis 

0 ( ) ( 1) ( 1): ( ) ( )J M M JH x xk r  can be rejected in favor 
of the double-sided alternative that at least one of the 
J  linear relations ( ) ( 1) ( 1)( ) ( )J M M Jx xk r  is not 
valid. However, the biophysical principles of the prob-
lem force the experimenter to assume that changes in 
the concentration of a given biomarker are natural, i.e., 
complete. It means that the experimenter would need to 
reject the null hypothesis 

0 ( ) ( 1) ( 1): ( ) ( )J M M JH x xk r  in favor of the double-
sided alternative that all J  linear relations 

( ) ( 1) ( 1)( ) ( )J M M Jx xk r  together are not valid. Re-
sulting from these necessities is the fact that mutual 
conformity is available only and only in the cases 
where the number of tested linear relations is 1J . 

It emerges from these reasons that instead of testing 
one null hypothesis 0 ( ) ( 1) ( 1): ( ) ( )J M M JH x xk r , we 
must test  simultaneous null hypotheses 

0 (1 ) ( 1) (1 1): ( ) ( ) ( )j j j j
M MH x x r xk r , where the index 

for the j th  simultaneous null hypothesis is 
1, 2, ,j . The size of the number , the concrete 
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form of definition row vectors (1 )
j

Mk  and elements 

( )jr x  is then dependent on whether our data are 
paired, unpaired or combined. This means that (for a 
given abscissa x ) the appropriate simultaneous null 
hypotheses are rejected when un-equalities 

 

( ) /jp x ,     1, 2, ,j , (5) 

 
are simultaneously valid. Along with this condition, the 
appropriate power analysis-un-equalities 

 

1 ( )j x convention limit ,     1, 2, ,j , (3) 

 
 

must be fulfilled. 
The requested power of the test (in other words the 

convention limit) depends on the test significance level 
: req1 ( 0.05) 0.8 and req1 ( 0.01) =0.95 

[3], [4]. 
For test significance levels  greater than 
0.05 , the requested powers of the test are 
req1 ( 0.1) 0.6125 , possibly req1 ( 0.2) = 

0.2375. 
 
 

 
 
Pictorial exemplifications of real data, Figures 1-9. 
 

The potential biomarker areas were obtained by the 
proposed data-treatment of the mass spectral data, 
measured with the aim of identifying renal cell carci-
noma biomarkers. Two experimental groups (diseased 
and healthy, i.e. gray and black) are demonstrated in 
figures. Gray pentagrams “ ”: discrete courses of the 
measured (renal cell carcinoma) spectrum; black points 
“ ”: discrete courses of the measured (not from renal 
cell carcinoma) spectrum; solid lines: statistical estima-
tions of the courses of function dependences based on 
the experimental courses of “ ” and “ ”. 

Conventional decision making conditions (5) and 
(6) are satisfied in the whole measurement range at all 
the 1st-9th figures. The physical unit of the independent 
variable (effective mass) in all pictures is Dalton. The 
physical unit of the dependent variable (intensity of 
mass-spectrum) in all pictures is as a %. Appropriate 
potential biomarker areas are then located around the x-
ordinates of appropriate dependent variable max-
imums. 
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Fig. 1: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 2: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 3: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 4: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 5: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 6: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 7: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 8: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Fig. 9: See comments in the section “Pictorial 
exemplifications of real data, Figures 1-9”. 
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Identifying biomarker areas in SELDI-TOF mass 
spectra 
 
 A large set of (normalized) mass spectral data, 
measured with the aim of identifying renal cell carci-
noma biomarkers, was subjected to the algorithm de-
scribed above. A group of data was obtained from 10 
patients suffering from renal cell carcinoma. One group 
of data was obtained from renal cell carcinoma tissue, 
the second group of data was obtained from the same 
patients but from healthy (i.e. not renal cell carcinoma) 
tissue. Naturally, the paired version of the proposed 
algorithm was used here. Spectra were divided into 
segments containing 200 points. The findings of the 
already discovered biomarker -crystallin”1 [11] by 
the proposed algorithm was confirmed. The proposed 
algorithm is very sensitive, as yet other potential bio-
marker areas were found. It managed to find at least 12 
cases of other biomarker areas. See figures 1-92. 
 
 
 

 
 

There is no doubt at present that computerized 
technologies in medicine and biological research, e.g. 
proteomics and genomics, need new approaches. This 
paper deals with “The Summary of Algorithmic Frag-
ments for Statistical Identification of Markers From a 
Set of Spectral Courses” in cases where data error 
disturbances have a normal distribution. 

The proposed algorithm works in practice very 
well. At first sight, this property of the algorithm could 
appear rather unexpected considering the very rigorous 
necessary requirements for the simultaneous testing (1) 
of the appropriate ( )p x -values. 

The discovered principles are generally usable in 
analogical spectroscopy studies, i.e., not only for 
treatment of MS for the purpose of biomarker identifi-
cation. They are even generally applicable to the arbi-
trary problem of marker identification (used in miscel-
laneous branches of human activity) by simultaneous 
tests in a set of quantifying dependences. 

With the help of an appropriate mass spectra data-
base analysis, the proposed methodological approach 
will lead to the construction of a clinic running system 
which will allow statistical decision making concern-
ing suspicion of disease in patients [16], [13]. 
 
 
 
 
 
                                                 
1 Ciphergen-software [2] 
2 Numbers of biomarker areas in particular figures: f.1: 1, f.2: 1, f.3: 
1, f.4: 2, f.5: 1, f.6: 2, f.7: 2, f.8: 1, f.9: 1. Note: Numbers of figures 
in headings of particular figures (e.g. “figure063” and the like) are 
order numbers of particular (200 points) original spectral segments. 
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