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Abstract 
This paper focuses on non-invasive blood glucose determination using photoplethysmographic (PPG) signals, which is 
crucial for managing diabetes. Diabetes stands as one of the world’s major chronic diseases. Untreated diabetes 
frequently leads to fatalities. Current self-monitoring techniques for measuring diabetes require invasive procedures such 
as blood or bodily fluid sampling, which may be very uncomfortable. Hence, there is an opportunity for non-invasive 
blood glucose monitoring through smart devices capable of measuring PPG signals. The primary goal of this research 
was to propose methods for glycemic classification into two groups (low and high glycemia) and to predict specific 
glycemia values using machine learning techniques. Two datasets were created by measuring PPG signals from 
16 individuals using two different smart devices – a smart wristband and a smartphone. Simultaneously, the reference 
blood glucose levels were invasively measured using a glucometer. The PPG signals were preprocessed, and 27 different 
features were extracted. With the use of feature selection, only 10 relevant features were chosen. Numerous machine 
learning models were developed. Random Forest (RF) and Support Vector Machine (SVM) with the radial basis function 
(RBF) kernel performed best in classifying PPG signals into two groups. These models achieved an accuracy of 
76% (SVM) and 75% (RF) on the smart wristband test dataset. The functionality of the proposed models was then verified 
on the smartphone test dataset, where both models achieved similar accuracy: 74% (SVM) and 75% (RF). For predicting 
specific glycemia values, RF performed best. Mean Absolute Error (MAE) was 1.25 mmol/l on the smart wristband test 
dataset and 1.37 mmol/l on the smartphone test dataset. 
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Introduction  

Diabetes is a major worldwide health issue caused by 
a relative or absolute lack of insulin. The International 
Diabetes Federation (IDF) reports that around 537 
million people aged 20–79 have diabetes. Untreated 
diabetes can lead to death [1]. 

It is essential for individuals with diabetes to monitor 
their blood glucose level (BGL) and keep it within the 
desired range. Currently, clinical practice relies only on 
invasive methods for blood glucose estimation, which 
has several drawbacks. Patients experience both 
physical and mental discomfort, and there is a notable 
risk of infection associated with this invasive approach 
[2]. 

The primary aim of this paper is to explore the 
potential of non-invasive measuring BGL using 
photoplethysmographic (PPG) signals measured by 

smart devices such as smart wristband (Empatica) and 
a smartphone. The paper aims to classify glycemia into 
two groups (low and high glycemia) and predict 
specific glycemia values using machine learning 
techniques. 

In recent years, PPG signals have become 
increasingly popular for estimating physiological 
parameters such as heart rate (HR), blood pressure 
(BP), or oxygen saturation (SpO2), perfusion index (PI) 
or vessel compliance. These signals are one of the most 
used signals in the field of health assessment through 
wearables. Considering the rapid expansion of smart 
devices, there exists a significant opportunity to extend 
health monitoring to a broader population [3]. 

Utilizing smart devices in healthcare comes with 
numerous benefits, such as cost-effectiveness, ease of 
use, the ability to monitor health in real-time, and 
suitability for extended self-monitoring at home. 
Moreover, smart devices make it convenient to 
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remotely share measured data and results with 
healthcare providers [4]. 

Photoplethysmography  

Photoplethysmography (PPG) is a non-invasive 
technique that measures changes in blood volume 
within the microvascular tissue of the skin by utilizing 
optical properties. While this method has been in use 
for several years, it has gained notable popularity in the 
past two decades due to advancements in wearable 
technology. PPG signals can be obtained from well-
vascularized areas of the body, typically from the 
finger (using a smartphone, smart ring), earlobe, wrist 
(smartwatches), or foot. The advantages of this method 
include simplicity, accessibility, and the low cost of 
wearable electronics for PPG sensing [5–7]. 

The PPG signal is acquired using a light source, such 
as Light Emitting Diode (LED), which illuminates the 
tissue in the desired area. In most cases, infrared LEDs 
are used because there is a small difference in light 
absorption between oxygenated and deoxygenated 
blood. The second fundamental component in this 
measurement is a photodetector, which can capture 
light that has either passed through the tissue 
(transmission mode) or light that has been reflected 
(reflection mode). In the transmission mode, the 
monitored area, such as a finger, is positioned between 
the light source and the photodetector. The reflection 
mode, on the other hand, involves placing the light 
source and photodetector side by side [5, 7, 8]. 

In general, the PPG signal consists of a pulsatile 
component (AC) and a non-pulsatile component (DC). 
The AC component originates from the heart's 
rhythmic changes in blood volume associated with 
each heartbeat. On the other hand, the non-pulsatile 
component, often referred to as the direct current (DC) 
component, changes very slowly, contains low-
frequency components, and is affected by factors like 
respiration, thermoregulation, and possible vasomotor 
activity [3, 6, 8]. 

 
Fig. 1: PPG waveform. 

In a typical PPG waveform of healthy individuals, 
a systolic peak, a diastolic peak, and a dicrotic notch 
are present (Fig. 1). The systolic peak is the highest 
point on the PPG waveform, corresponding to the 
maximum blood volume in the microvascular bed 
during systole. Diastolic peak reflects the lowest blood 
volume in the microvascular bed during diastole. In 
individuals with healthy arteries, the PPG waveform 
can exhibit a dicrotic notch, which varies with vascular 
compliance and vascular tone [6]. 

Materials and methods  

Data record in g  

For this experiment, two datasets of PPG signals 
were created. The first dataset came from the Empatica 
E4 wristband (Empatica Inc., United States). The PPG 
signal derived from Empatica is generated using 
a patented algorithm that combines both green and red 
light. The signals are sampled at a frequency of 64 Hz. 
The second one was measured using a Samsung Galaxy 
Note 20 smartphone (Samsung Electronics, Vietnam). 
The video resolution was set to 1080×1920 pixels, and 
the frame rate was 30 frames per second. 

Sixteen people (11 females and 5 males) with ages 
ranging from 22 to 79, volunteered for the study. Out 
of these participants, 5 had diabetes or prediabetes. All 
participants provided written informed consent, and the 
research was approved by the Ethical Committee 
Faculty of Electrical Engineering and Communication 
for Biomedical Research, Brno University of 
Technology. 

 
Fig. 2: Measurement scheme: Acquisition of a 15-min 
PPG signal using the Empatica wristband, and three 
one-min PPG recordings using a smartphone. 
Reference values were collected three times, each time 
after a 5-min interval. 

The measurement process is depicted in Fig. 2. Each 
measurement lasted for 15 minutes. Throughout the 
measurement, the PPG signal was continuously 
recorded using the Empatica smart wristband. 
Additionally, one-minute PPG signals were measured 
three times using a smartphone during the whole 
measurement. The participants placed their finger on 
the smartphone's camera, covering both the lens and the 
LED light source. From the video of the finger, the 
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average red component corresponding to the raw PPG 
signal was extracted. Simultaneously, the reference 
BGL was measured three times using a certified Fora 
Diamond Mini glucometer. To increase the amount of 
data obtained from individuals with higher BGL, 
diabetic participants underwent the entire measurement 
process twice. The measured BGL ranged from 4.3 to 
13.2 mmol/l. 

Data pr eprocess in g  

To increase the amount of data for glycemic 
classification and prediction, a 15-min measurement 
from a smart wristband was divided into three separate 
5-min segments, each associated with three reference 
glycemia values. These 5-min segments were 
shortened to 4.5 min for individuals with diabetes or 
prediabetes and to 2.5 min for healthy individuals to 
ensure an approximately even distribution of data in 
both classification groups. All shortened signals were 
divided into 10-s segments (Table 1). The 
classification threshold for dividing the data into two 
groups was set at 7.2 mmol/l, according to the 
glucometer manual. 

The video captured using the smartphone camera was 
converted into a PPG signal. The red video channel was 
chosen, and an average value was calculated from each 
video frame. Additionally, the PPG signals derived 
from the smartphone were divided into 10-s segments. 

Table 1: The number of 10-second records and their 
distribution into two classification groups. 

Smart wristband 

number of 
10-s records 

low glycemia 
level 

high glycemia 
level 

1143 537 606 
Smartphone 

number of 
10-s records 

low glycemia 
level 

high glycemia 
level 

129 60 69 

PPG signals measured by the smartphone are often 
of lower quality compared to wearables due to potential 
finger movements over the camera lens and pressure 
variations. For this reason, signal quality was assessed 
using an algorithm described in [9]. The algorithm is 
based on the computation of two features: perfusion 
and Shannon entropy, and the classification of data into 
high-quality/low-quality groups using a non-
hierarchical k-means clustering method. Only high-
quality signals were used for further analysis. 

All 10-s PPG signals from both devices were filtered 
and normalized using max-min normalization. Signals 
measured by smartphone were inverted because they 
involve reflected light during acquisition. PPG signals  
 

obtained from the Empatica wristband are already 
inverted. Noise was reduced using a second-order 
Butterworth band-pass filter ranging from 36 beats per 
minute (bpm) to 216 bpm (Fig. 3). 

 
Fig. 3: PPG signal measured by a smartphone before 
and after preprocessing. 

Feature extr act ion  

A total of 27 different features were extracted from 
the 10-s PPG signals. Some of these features are based 
on Heart Rate Variability (HRV) analysis, as it has 
been shown that diabetics exhibit reduced HRV due to 
decreased parasympathetic activity [10]. Additional 
features are derived from the PPG waveform 
morphology, influenced by the varying light absorption 
of blood with different glucose levels. 

Outliers were replaced, all features were normalized 
using Z-score, and a statistical analysis of the features 
was conducted. Initially, a normality test was applied 
to each feature. In cases where the data followed 
a normal distribution, an unpaired t-test was applied. If 
the data did not have a normal distribution, the non-
parametric Mann-Whitney test was used. The goal of 
these tests was to identify features that were not 
statistically significant for classifying the data into the 
two mentioned groups. In this manner, only 4 features 
were excluded. 

To further reduce the number of features, a selection 
method called "Maximum Relevance and Minimum 
Redundancy" (mRMR) was applied to the remaining 
set of 23 features, reducing the feature space to 10 
features (Table 2). 

Glycemic  c lassi f icat ion and pred ict ion  

Measured PPG signals are classified into two groups 
(low/high blood glucose) using a classification 
threshold of 7.2 mmol/l. Several different machine 
learning methods were tested for this purpose, 
including logistic regression (LR), k-nearest neighbors 
(KNN), support vector machine (SVM), and random 
forest (RF).
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Table 2: Description of selected features by mRMR. 
Features Description 

kurtosis describes the distribution of 
a dataset around the mean and 

tells us whether the data is 
distributed symmetrically or not 

skewness is a measurement of the 
distortion of symmetrical 

distribution or asymmetry in 
a data set 

entropy measures the degree to which 
a probability distribution 

deviates from a uniform or equal 
distribution 

peak to RMS returns the ratio of the largest 
absolute value in signal to the 

root-mean-square (RMS) value of 
signal 

shortest PP 
interval 

shortest distance of peak-to-
peak (PP) intervals 

TKEO ratio the ratio of the minimum and 
maximum values of the envelope 
obtained using the Teager-Kaiser 

Energy Operator (TKEO) 

CV the coefficient of variation (CV) is 
the standard deviation of a set of 
RR (PP) intervals divided by the 

mean of that set of intervals 

SDNN the standard deviation of NN 
(PP) interval lengths 

pNN50 the ratio of NN50 to the total 
number of NN intervals in the 

recording 

min/max of 
1st derivative 

the ratio of the minimum to the 
maximum of the 1st derivative of 

the PPG 

Training and testing were conducted using data 
obtained from the Empatica smart wristband. Cross-
validation (k = 4) was performed to find optimal model 
parameters and obtain more reliable results. In each 
iteration of cross-validation, the data was split into 
training (75%) and testing (25%) sets. It was ensured 
that data from the same patient did not appear in both 
the training and testing sets simultaneously. The results 
represent the average values from all cross-validation 
iterations. The functionality of the best models was 
verified using data measured by a different device—
a smartphone. 

To predict the specific blood glucose value from PPG 
signals, various machine learning methods were tested 
for the regression task, including KNN, SVM, and RF. 

The training and testing procedures were again 
conducted using data from the Empatica smart 
wristband. In the training process, cross-validation 
(k = 4) was used, maintaining the same data split ratio 
for training and testing sets as used in the classification 
task. The mean absolute error (MAE) was determined 
as the average of all cross-validation iterations. 
Subsequently, the best model (RF) was further 
validated using data from smartphone. 

Results 

The classification task was evaluated using two 
metrics: accuracy (ACC) and F1 score (F1), which 
represents the harmonic mean of precision and recall. 
Table 3 summarizes the achieved results of the best 
classification models (SVM with RBF kernel and RF) 
for the training and testing datasets from the smart 
wristband. 

Table 3: Results of blood glucose classification into 
two groups (msp – minimum sample leaf, nf – number 
of trees). 

Smart wristband 
 training set testing set 

Model ACC 
(%) 

F1 
(%) 

ACC 
(%) 

F1 
(%) AUC 

SVM 
RBF 

86.4 86.3 75.6 75.6 0.76 

RF 
nf = 90 
msp = 9 

89.2 89.7 74.9 74.1 0.76 

Smartphone 
testing set 

Model ACC 
(%) 

F1 
(%) AUC 

SVM 
RBF 74.0 73.1 0.71 

RF 
nf = 90 
msp = 9 

74.5 76.7 0.71 

 
Additionally, Table 3 shows the optimal 

hyperparameters used in RF model: msp – minimum 
sample leaf and nf – number of trees. Subsequently, the 
functionality of both models was validated on the 
dataset obtained from the smartphone. To assess the 
classifiers’ quality, the Receiver Operating 
Characteristic (ROC) curve, and the Area under the 
Curve (AUC) were used. The average AUC value for 
each classifier is shown in Table 3. 

Table 4 summarizes MAE of the best model (RF) 
with optimal parameter settings for predicting specific 
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BGL on the training and testing datasets from the smart 
wristband. The functionality of the proposed model 
was validated using data measured by the smartphone. 

Table 4: Results of blood glucose prediction (msp – 
minimum sample leaf, nf – number of trees). 

Smart wristband 
 training set testing set 

Model MAE (mmol/l) MAE (mmol/l) 

RF 
nf = 80 

msp = 45 
 

0.86 1.25 

Smartphone 
testing set 

Model MAE (mmol/l) 

RF 
nf = 80 

msp = 45 
 

1.37 

Discussion  

The results of the proposed methods are comparable 
to the findings of other authors. For instance, Zhang et 
al. [11] utilized KNN methods for classifying BGL 
from PPG signals and achieved an accuracy of 74%. As 
for predicting specific BGL from PPG signals, Nie et 
al. [12] used RF and achieved MAE of 1.72 mmol/l. 
Conversely, Manurung et al. [13] used deep learning, 
which generally yields better results, achieving a result 
of 0.32 mmol/l. Due to a lack of data, this approach was 
not feasible. The observed difference in MAE between 
the training and testing sets can be attributed to 
a patient with an exceptionally low BGL compared to 
others, included in the testing set. This discrepancy 
highlights a limitation of the study, including the 
number of measured subjects (16) and the range of 
measured BGL (4.3–13.2 mmol/l). It is important to 
note that there is currently no freely available database 
of PPG signals containing reference BGL, so all data 
had to be measured. Despite the limitations, this work 
demonstrates good results in both the classification task 
and the prediction of specific BGL, which are 
comparable to the state-of-the-art methods, 
highlighting the potential for using smart devices and 
PPG signals for non-invasive blood glucose estimation. 

Conclusion  

This paper focuses on non-invasive estimation of 
BGL from PPG signals. Two databases of PPG signals 

were created. One contains data measured by the 
Empatica smart wristband. The second database 
consists of PPG signals recorded by a smartphone. It is 
only used to validate the functionality of the proposed 
algorithms on data obtained from a different device. 
Dataset preparation involved assessing the quality of 
PPG signals obtained from the smartphone, which are 
often of lower quality. All PPG signals were 
normalized and preprocessed, and relevant features 
were extracted. Data collected from the smart 
wristband were used for training and testing the 
algorithms proposed for both classification and 
prediction of BGL. Various machine learning models 
were evaluated for classification and prediction, with 
the RF and SVM with an RBF kernel models achieving 
the best results for classifying PPG records into two 
groups (low and high glycemia). These models 
achieved Acc of 76% (SVM) and 75% (RF) on the 
testing dataset from the smart wristband. The 
functionality of the proposed models was then 
validated on the testing dataset from the smartphone, 
where both models achieved similar results: 74% 
(SVM) and 75% (RF). RF achieved the lowest 
MAE = 1.25 mmol/l on the testing dataset from the 
smart wristband and 1.37 mmol/l on the testing dataset 
from the smartphone. The obtained results for both 
classification and regression tasks are comparable to 
those of other authors, highlighting the potential for 
using smart devices and PPG signals for non-invasive 
BGL estimation. 
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