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Abstract 
Deep brain stimulation of the globus pallidus internus is an effective symptomatic treatment for pharmacoresistant 
dystonic syndromes, where pathophysiological mechanisms of action are not yet fully understood. The aim of this review 
article is to provide an overview of state-of-the-art approaches for processing microelectrode recordings in dystonia; in 
order to define biomarkers to identify patients who will benefit from clinical deep brain stimulation. For this purpose, the 
essential elements of microelectrode processing are examined. Next, we investigate a real example of spike sorting 
processing in this field. Herein, we describe baseline elements of microrecording processing including data collection, 
preprocessing phase, features computation, spike detection and sorting and finally, advanced spike train data analysis. 
This study will help readers acquire the necessary information about these elements and their associated techniques. 
Thus, this study is supposed to assist during identification and proposal of interesting clinical hypotheses in the field of 
single unit neuronal recordings in dystonia. 
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Introduction  

Electrophysiology is a means by which researchers 
are able to acquire neural electrical signals at various 
spatial scales. Several approaches can be used to study 
the nervous system—one of them is sensing action 
potentials on the surface of a nerve cell membrane using 
electrodes (Fig. 1). A lot of methods have been intro-
duced to provide processing and analysis of neural 
signals. We primarily refer to single unit electrophysi-
ology in dystonia, which is an important extrapyramidal 
study subject in neurology. 

Dystonia is a movement disorder in which a person's 
muscles contract uncontrollably. The contraction causes 
the affected body part to twist involuntarily, resulting in 
repetitive movements or abnormal postures. Dystonia 
can affect one muscle, a muscle group, or the entire 
body. Dystonia affects about 1% of the population, and 
women are more prone to it than men [1]. Deep brain 
stimulation of the globus pallidus internus (GPi-DBS) is 
an effective treatment for pharmacoresistant dystonic 
syndromes, where pathophysiological mechanisms of 
action are not yet fully understood [2]. The age of onset 
is a factor in determining the phenotype of dystonia. The 
phenotype of childhood-onset dystonia is highly 
associated with the DYT1 mutation [3]. Whole exome 

sequencing is an efficient, sensitive and specific method 
for determining the genetic cause of dystonia [4]. 

 
Fig. 1: Approximate ranges of spatiotemporal 

sensitivity of neural measurement techniques. Impor-
tantly, single unit approaches can measure and control 
a range of spatiotemporal organization relating to 
individual neurons and dendrites. Author’s artwork 
created with inspiration from [5]. 
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Although GPi-DBS is an effective treatment for 
dystonia, it may cause important stimulation-induced 
side-effects such as hypokinetic dysarthria or stuttering 
[6]. Noninvasive deep brain stimulation is an important 
goal in neuromodulation: a promising area of DBS in the 
future is the development of optogenetics. Chen et al. 
used specialized nanoparticles that can upconvert near-
infrared light from outside the brain into the local 
emission of blue light. They have injected these 
nanoparticles into a mouse brain and activated channel 
expressed in dopaminergic neurons with near-infrared 
light generated outside the skull at a distance of several 
millimeters [7]. 

This article reviews basic concepts and terminology 
from neural signal processing and spike statistics. It  
also describes the different types of neural signals, 
preprocessing, spike sorting, and lists available models 
with which these neural events are analyzed. Finally, it 
presents a real data example dealing with microrecord-
ing signal from the brain. 

Principles of measuring single unit 
neuronal activity  

There are two basic types of microelectrode re-
cordings: intracellular and extracellular. Intracellular 
recordings form a group of techniques used to measure 
with precision the voltage across, or electrical currents 
passing through, neuronal or other cellular membranes 
by inserting an electrode inside the neuron [8]. Intra-
cellular electrodes are made of thin glass pipettes that 
are pulled to a very fine and sharp ending or tip. The 
typical time course of the intracellular action potential 
with its first positive peak can be modelled by the 
Hodgkin-Huxley theory [9]. 

On the other hand, neuronal cell activity gives rise to 
transmembrane currents that can be measured in the 
extracellular medium. Although a major contributor of 
the extracellular signal is the synaptic transmembrane 
current, other sources—including Na+ and Ca2+ spikes, 
ionic fluxes, ligand-gated channels and intrinsic 
membrane oscillations—can substantially shape the 
extracellular field. Electric fields can be monitored by 
extracellularly placed electrodes with submillisecond 
time resolution and can be used to interpret many facets 
of neuronal communication [10]. The shape of the 
extracellular action potential depends on the location of 
the electrodes and the experimental conditions. This 
phenomenon was illustrated on the recorded spikes from 
a 5-layer pyramidal cell with thin saline layer covering 
chip [11]. 

Recent advances in the development and application 
of nanoelectrodes enables simultaneous recording of 
intracellular and extracellular spontaneous spikes in 
mammalian neurons and cardiac cells [12]. A simulta-
neously recorded intracellular voltage gave the precise 

spike times of a local neuron, that can be used as the gold 
standard against which to compare the output of the 
extracellular spike detectors [13]. 

Extracellular neuronal activity is routinely explored in 
patients, using monopolar and multipolar microelec-
trodes in several parallel trajectories, during the implant-
tation procedure into the GPi with the aim of finding 
an optimal site for the placement of a permanent stimu-
lation electrode. Presently, placement suitability is 
judged primarily by the neurologist, either visually or 
acoustically, based on a specific expression of neuronal 
action potentials (spikes). Due to their nature as all-or-
none events, the occurrence of spikes over time is 
represented as a list of binary numbers (spike train), 
specifically zeroes for “no spike” or ones for a “spike”. 
Neurons use spikes as their preferred medium of neural 
coding communication. Because the physiological spike 
duration amounts to approx. 1.5 ms, the signal should be 
sampled at units of kHz. 

Analysis of extracellular neural  
activity  recordings  

Electrophysiological microrecordings (MERs) are 
typically filtered in 500–5000 Hz. Bandpass filtering 
ensures the removal of slow shift and high frequency 
content while leaving the intermediate band (spiking) of 
frequencies intact. Spike sorting is considered the most 
important advanced processing step to accurately 
evaluate unit activity. 

Spike detection and sorting 

Data analysis for neuron recordings still requires two 
main problems to be solved—the reliable detection of 
spikes and the sorting of these spikes by their originating 
neurons. Finding the number of neurons is usually done 
manually during spike sorting—it is an unsupervised 
clustering problem where the number of the clusters is 
unknown. Approaches and solutions for both problems 
are difficult to evaluate quantitatively, due to a lack of 
knowledge about the truth behind the experimental data 
[14]. 

Spike sorting is one of the key techniques to 
understand brain activity. The process pipeline starts 
with a simple/adaptive threshold detection and ends with 
unsupervised sorting according to multidimensional 
feature extraction [15, 16] (Fig. 2). Machine learning 
techniques including deep learning, clustering, fuzzy, 
the Bayes approach and many more are successfully 
applied during spike sorting [17, 18]. 

Amplitude thresholding methods are the simplest: 
A spike is detected if the band pass filtered raw signals 
crosses a predefined threshold such as a multiple of the 
standard deviation of the underlying signal. A threshold 
that is frequently used is [19]: 
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𝑇𝑇 = 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � |𝑥𝑥|
0.6748

�, (1) 

where n is a constant (typically n = 4) and the second 
term is an estimate of the standard deviation of the noise 
in the voltage 𝑥𝑥. Signal to Noise Ratio (SNR) is an 
important parameter that affects spike detection. The 
distance is often given in dB, when the ratio is converted 
to ten times the decimal logarithm from the SNR. 

 

 
Fig. 2: Three principal stages of unsupervised spike 
sorting algorithms.  

Usually, spike sorting analyzes are performed 
manually or with some semi-automatic tools, so it is  
a laborious and time-consuming task. Its objective 
automation is complicated. The purpose of various 
algorithms is to reduce the complexity and increase the 
accuracy of the entire process. Close neurons are first 
detected using an amplitude threshold. Peaks exceeding 
the threshold form a set of candidate spikes, which can 
then be clustered based on their amplitude and shape 
[16]. 

WaveClus algorithm by Quiroga has become 
a research milestone for the convenience and accuracy 
of sorting. Detected spikes can be described by many 
features: e.g. amplitudes, gradients in curves, WaveClus 
features, wavelets coefficients [20]. The best wavelet 
coefficients can be selected as those with the least 
Gaussian distribution, using a Kolmogorov-Smirnov 
test of normality. 

The reduction of dimensionality, including the 
Principal Component Analysis (PCA) or Independent 
Component Analysis (ICA) [21], is a task employed 
prior to clustering. In a recent article, Dimitriadis et al. 
introduced the stochastic neighboring embedding (t-sne) 
dimensionality reduction method as a visualization tool 
in the spike sorting process. T-sne embeds the 
n-dimensional extracellular spikes (n = number of 
features by which each spike is decomposed) into a low 
(usually 2D/3D) dimensional space. They show that 

such embeddings, even starting from different feature 
spaces, form obvious clusters of spikes that can easily 
be visualized and delineated with a high degree of 
precision [22]. 

An effective clustering algorithm relating to the 
WaveClus is superparamagnetic clustering. For 
instance, selected wavelet coefficients serve as the input 
for the unsupervised classification expectation 
maximization algorithm [23]. However, the use of 
various unsupervised approaches is available: K-means, 
Gaussian Mixture Models, DBSCAN etc. Links and 
comprehensive descriptions of publicly available code 
for spike sorting can be found in [24]. Examples of 
software packages and their mode of operation that have 
been used for human recordings are as follows: 

 
• MClust — manual [25], 
• KlustaKwik — semi-automatic with manual 

refinement [26], 
• OSort — automatic online sorting, manual cluster 

selection [27], 
• Wave_clus — automatic offline sorting, manual 

cluster selection [28]. 

Spike train analysis 

Mathematically, spike train analysis is essentially an 
analysis of event-to-event data. Typically, the first step 
in spike data analysis involves visualizing and using 
simple descriptive statistics to characterize pertinent 
features of the data [29]. Various spike train metrics 
have been proposed to decode information content from 
biological spike trains [30]. Multineuron spike trains are 
called “parallel spike trains”. In the case of a single spike 
train, the main idea is to convert a spike train into a set 
of features that can be visualized and/or compared 
across different conditions, for instance: 
 
• mean firing rate (MFR), 
• instantaneous firing rate, 
• variability, 
• Fano factor, 
• power spectra (and power in specific bands), 
• inter-spikes interval (ISI), 
• ISI histogram, 
• coefficient of variation (CV) of ISI, 
• autocorrelation, 
• entropy, 
• burst-based metrics: burst rate, number of spikes in 

a burst, inter-burst intervals, burst index, 
• serial correlation, 
• generalized linear model. 

 
Basically, it is important to be able to characterize 

spike rhythms in GPi neurons and to know with 
statistical confidence when these rhythms have changed. 
E.g., a neurosurgeon hypothesizes that information 
relating to a movement task, such as planning versus the 
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movement period and whether the movement is to the 
left or right, will influence this rhythmic spiking 
activity. The goal is to characterize spiking properties, 
identify whether rhythmic activity is present and 
statistically significant, and how such activity is 
influenced by the task variables. As with ISI models, 
maximum likelihood (ML) is performed to obtain 
general linear model (GLM) parameters. In general, it is 
not possible to obtain a closed form solution for the ML 
estimator. For this purpose, a numerical optimization 
technique such as Newton’s method is suitable. 

Methods of assessing coupling between concurrent 
neuronal signals 

These methods are interested in quantitatively 
assessing the association between spike trains. Coupling 
among preprocessed signals can be essentially assessed 
by cross-frequency coupling (CFC) [31] and coherence 
[32]. Coherence is a measure of association between 
rhythms at the same frequency. Then, CFC focuses on 
assessing the association between different frequency 
rhythms. The Pearson's correlation coefficient is a less 
reliable but usable method. Generally, analysis of 
multiple parallel spike trains can be time consuming. 
The following lists highlight current methodological 
terms: 

Two spike trains 

• crosscorrelation, 
• mutual information, 
• Pearson correlation, 
• Kullback-Leibler divergence, 
• generalized linear models, 
• coherence (partial coherence), 
• comparison of instantaneous firing, 
• joint pausiness. 

Many spike trains 

• snowflake plots, 
• high-order correlations — CuBIC, 
• latent dynamical approach, 
• pairwise interaction, 
• Hawkes models. 

Application to real  data  

Many studies investigating neural activity have been 
performed in the GPi as well as in the subthalamic 
nucleus (STN). Recent technical and machine learning 
advances in microrecording have created new 
opportunities to study biomarkers related to various  
 
 
 

movement disorders, for instance, discovering an 
electrophysiological “sweet spot” for DBS-STN in 
Parkinson's disease [33]. Such studies aim to describe 
the functionality of specific neurons, which is of 
paramount importance in neuromodulation research 
with possible therapeutic applications in medicine. In 
this section we present a real example of signal 
processing according to the subset of the methods listed 
above. 

For spike train analysis, spikes were extracted from 
a prototypical brain measurement with spontaneous 
spiking activity and then clustered using WaveClus [28] 
(Fig. 3). The recording time was 5 min at a sampling rate 
of 20 kHz. 

Further, we applied generalized linear models in 
measuring the functional connectivity between a pair of 
neuronal spike trains, 𝑥𝑥 with times 𝑠𝑠𝑖𝑖𝑥𝑥  vs. another spike 
train 𝑦𝑦 with times 𝑠𝑠𝑖𝑖

𝑦𝑦. Spike trains can be mathematic-
cally described as GLM point processes. 

GLM is a class of models that generalizes the ordinary 
linear regression by allowing the predicted variable to 
have a distribution other than normal. To do this, the 
predicted variable is related to the regressors via 
a nonlinear link function. To fit a GLM to spike trains x 
and y, the regressors have to be calculated using the 
spike trains and then GLM can be fitted using maximum 
likelihood optimization. After a model is obtained, its 
goodness-of-fit has to be investigated. Then, to find out 
whether a significant functional connection between x 
and y exists, the submodel of coefficients γ is tested 
against the full model [34]. 

To characterize the level of communication between 
neurons, we evaluated timing relationships in spike 
trains of simultaneously recorded neurons. The result of 
the GLM fit is a set of coupling functions that estimate 
the change in the probability of a spike in one neuron in 
response to a spike from another simultaneously 
recorded neuron. For this spontaneous activity (Fig. 3a), 
GLMs did not evaluate the coupling as significant. To 
our knowledge, coupling investigation in the dystonic 
GPi-DBS connectomics has not been studied yet. The 
presented pipeline was implemented in the Matlab 
2018b (MathWorks, USA) programming environment. 

Conclusion  

This review illustrates a practical approach for 
visualization of background firing activity from GPi 
neurons, computing and interpreting descriptive 
statistics including coupling, and building simple 
models of inter spike interval distributions. This review 
also presents the essential steps in processing real 
single-unit neural activity and extracting advanced 
statistics. 
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Fig. 3: The application of the selected methods for real 
MER processing. The recorded series is a summary 
activity of a large number of neurons further away from 
the electrode (background activity) and the activity of 
neurons in close vicinity of the electrode tip (single-unit 
activity). The signal can be decomposed in an estimation 
process called spike-sorting: a) A filtered raw signal 
and visualization of individual spike trains hidden in it. 
b) We used PCA to reduce multidimensional space after 
WaveClus detection. c) The spikes were sorted by the 4-
means method and characteristic statistics on extracted 
neurons are listed. 
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