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Abstract  
The paper presents newly proposed algorithm for the blind separation of EEG and EMG sources measured by high 
density electrode arrays. The algorithm is based on the maximization of the variance of variances of filtered principal 
components. Utilized high pass filter was optimized in order to extract the information which is used by the gradient 
algorithm to separate EEG and EMG components. The performance of the algorithm was evaluated by its use for the 
muscular artifacts removal. Present muscular artifacts were extracted from the estimated components with the use of 
the previously used classifier. It is compared with other similar approaches and it is shown that the suggested 
algorithm achieves higher quality of the processed EEG signal especially in the case of strong muscular artifacts and is 
therefore useful for the preprocessing of the EEG records contaminated with the muscle activity.  
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Introduction 
 

This paper presents the newly proposed gradient 
algorithm for the blind separation of EEG and EMG 
sources which can be used for muscular artifacts 
suppression. 

The distortion of EEG signals which is caused by 
muscular artifacts poses a serious threat to the further 
processing of EEG, since it can completely mask any 
measured EEG content. Furthermore, the conventional 
approaches to its removal are not always effective. The 
simple filtering in time or frequency is not effective 
because of the overlapping spectra of EEG and EMG 
signals and the regression filtering, which is often used 
for EOG artifacts removal, is not usable because of the 
propagation of EEG signals to the reference channel. 

Algorithms using Independent Component Analysis 
(ICA) principle try to solve this problem by a spatial 
filtering principle; therefore, they are achieving better 
results in comparison with other techniques. Most often 
used algorithms in the EEG processing are FastICA 
[2], extended Infomax [3] and SOBI [1]. 

The typical ICA algorithm for muscular artifacts 
removal is based on four main parts [3, 4, 5]. After the 
necessary preprocessing, which is usually applied in 
order to get rid of the baseline wander and the power 
line disturbance, the BSS method is applied on 
measured EEG signals to invert the mixing process 

ASX , (1) 

where the matrix A is the so-called mixing matrix, the 
rows of a matrix X are measured EEG signals, and the 
rows of a matrix S are underlying source signals. We 
further suppose that number of measured signals is the 
same as the number of sources and will be further 
denoted as N. 

By the inversion of the mixing process, the BSS 
technique estimates the underlying source signals, 
which are of either the EEG or the artifact origin 

 

WXŜ , (2) 
 

where the rows of a matrix Ŝ are estimated source 
signals, and W is the so-called demixing matrix. 

The classifier is then used to select the artifactual 
sources [7]. The rows of the matrix Ŝ  containing these 
sources are zeroed and the EEG signal is reconstructed 

 

ec SWX ˆ1 , (3) 
 

where the rows of cX  are clean EEG signals, and eŜ  
denotes the matrix of the estimated source signals, 
where all artifactual sources were zeroed. 

This algorithm should be applied on the segments of 
EEG with the length that is equal to the length of the 
present muscular artifact; otherwise, the useful 
information from the EEG surrounding EMG artifacts 
can be lost. The results presented in this paper were 
gained for one second long EEG segments. 



ORIGINAL RESEARCH  

44 
 

The weakness that lies within this ICA approach is 
the necessity of sufficiently long EEG records with 
respect to the number of measured signals (often 8 and 
more seconds). If this condition is not fulfilled, the 
higher order statistics might not be estimated correctly 
and the phenomenon known as the overlearning might 
occur. The overlearning dramatically suppresses the 
capability of ICA to separate EEG and EMG sources 
[8], which results in the poor performance of the 
muscular artifacts removal algorithms. 

In [8], the author uses spatial dimension reduction 
principle in order to suppress the overlearning within 
one second long EEG segments, however, the 
performance of these ICA algorithms tends to 
deteriorate with the stronger present artifacts and get 
close to the performance of a mere low-pass filtering 
applied to the measured signals [8]. 

Therefore, the new algorithm based on the 
maximization of the second order based feature is 
presented [8]. This estimation is not susceptible to the 
overlearning and can process even very short EEG 
segments; furthermore, it will be shown that its 
performance degrades more slowly in comparison with 
ICA for stronger artifacts. 

The paper is organized as follows. The first part 
presents the newly proposed algorithm and its 
derivation. The second part gives the description of the 
used evaluation principle. The third part summarizes 
the achieved results with the algorithm and compares 
its performance with other used BSS methods. Finally, 
the advantages of the proposed algorithm are 
highlighted. 

 
Methods 
 
Proposed separation algorithm 
 

The developed separation algorithm is based on the 
constrained maximization of the feature which was 
previously used in a control mechanism of the 
separation quality for the utilized FastICA algorithm 
[8]. 

As in [8], we also preprocess the input signals with 
the use of principal component analysis (PCA), but 
instead of the ICA step, we will estimate the final form 
of separation matrix W with the following procedure. 

Let us denote N principal components by a matrix U, 
their filtered versions by a matrix Uf and the number of 
measured samples by M. We further multiply matrix Uf 
by a separation row vector  vi, i = 1, 2, .., N to get 
separated components. Then the previously used 
checking feature, the variance of the variances of high-
pass filtered components after separation, has the 
following form 
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where C is the checking feature and the function 
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After some algebraic manipulation, we get the 
following form of the checking feature 
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The first term in (6) is now to be maximized with 

respect to the separation vectors vi, i = 1, 2, .., N under 
the condition of their unit norm 

 

1iv . (7) 
 

The second term in (6) will be handled during the 
orthonornalization phase of the algorithm, which is 
also necessary as in the case of the FastICA algorithm. 

For the maximization of the first term, we use the 
Lagrange multiplier method combined with the 
Newton’s method. The main goal is to determine the 
form of each term in 

)()( 1
iiii f vJvvv , (8) 

 

where f(vi) is the first derivative of the Lagrangian 

iiffii vNgf vUUv )(4)( T  (9) 
 

and J(vi) is the Jacobian matrix of form 

)
T

(4)
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T
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8 ffiNgiffffi UUvUUUUv . (10) 
 

The Lagrange multiplier λ can be derived by 
multiplication of (9) by vi

T from the left side to get 
 

iffii Ng vUUv )(4 TT . (11) 
 

When we substitute equations (9), (10) and (11) to 
equation (8), we get an update step for one separation 
vector. In the final form of the algorithm, the 
separation vectors are estimated one by one following 
the deflation scheme of the FastICA algorithm [2]. 
After each update of the separation vector, the Gram-
Schmidt orthonormalization is performed. The 
estimation stops when the separation vector change 
between two consecutive iterations is minimal [8]. The 
scheme of the proposed separation algorithm is 
illustrated in Fig. 1. 
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Fig. 1: The overall scheme of the proposed separation 
algorithm.  

 
The utilized high-pass filter should extract the 

maximum possible information about present muscular 
artifacts; therefore, the following procedure was used 
to determine its transfer characteristic. 

The set of clean EEG signals was averaged and the 
PSD of result was computed and the same procedure 
was carried out for a set of EEG signals with strong 
muscular artifacts. Then the transfer characteristic of 
the utilized filter was determined 

)(
)()()( 2

emg

eegemg
h S

SSH , (12) 

 

where )(emgS  denotes averaged power spectral 
density (PSD) of the measured EEG signal with strong 
muscular artifacts and )(eegS denotes averaged PSD 
of the measured clean EEG signals. 

The estimated transfer characteristic of the utilized 
filter is shown in Fig. 2. 

 
Fig. 2: The transfer characteristic of the used filter.  

Evaluation Method 
To evaluate the performance of the proposed 

algorithm, we compared the original clean EEG 
signals, which are contaminated by EMG artifacts, with 
processed EEG signals. In order to do this, we need to 
have the set of clean EEG signals as well as the set of 
their contaminated versions. 

Actually, it is impossible to measure both clean and 
corrupted EEG signals at the same time; therefore, we 
measured a set of clean EEG signals and simulated the 
distribution of muscular artifacts along the head's 
surface. 

All signals were measured using the sampling 
frequency 1024 Hz. EEG signals were measured by the 
electrode system with 111 electrodes. EMG samples 
which were taken as muscular sources for the 
simulation were measured by four electrodes, two of 
them were placed on mandibles and the rest of them 
were placed on the both sides of the neck. 

To simulate the distribution of muscular sources 
along the head's surface we used the realistic head 
model computed by the Boundary Element Method 
(BEM). Simulations were performed using a three-shell 
realistic head model. Each layer of this model 
contained 6 480 triangular elements which resulted in 
19 440 elements in total. The conductivities of the 
brain, skull and skin regions were in ratio 1:1/80:1 
[18]. 

The number of muscular sources in the simulation 
was 11, five sources represented cervical muscles and 
the rest of sources represented mandibles. 

The simulated EMG signals were added to the clean 
EEG signals in the same manner as in the [9] and a set 
of clean EEG signals and two sets of EEG signals with 
variously strong muscular artifacts were created. 

The performance of the proposed method was 
evaluated by the computation of average correlation 
coefficients rxy between the original clean EEG signals 
and the processed EEG signals for each level of EEG 
distortion. 
 
Results 
 

In the tables Tab. 1, Tab. 2, and Tab. 3, there are 
summarized achieved average correlation coefficients 
for the proposed algorithm and the FastICA algorithm 
with various dimension reduction strength for one 
second long EEG segments. 

Tab. 1: Correlation coefficients from processing of 
EEG without muscular artifacts. 

Method Av. correlation coeff. 
None 1 

FastICA, 111 channels 0.3021 
FastICA, 50 channels 0.5427 
FastICA, 12 channels 0.9591 

ICA algorithm [8] 0.9595 
New algorithm 0.9496 
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Tab. 2: Correlation coefficients from processing of 
EEG with equally strong muscular artifacts. 
 

Method Av. correlation coeff. 
None 0.8779 

FastICA, 111 channels 0.3032 
FastICA, 50 channels 0.4976 
FastICA, 12 channels 0.8897 

ICA algorithm [8] 0.9289 
New algorithm 0.9293 

 

 

Tab. 3: Correlation coefficients from processing of 
EEG with four times stronger muscular artifacts. 
 

Method Av. correlation coeff. 
None 0.5442 

FastICA, 111 channels 0.2920 
FastICA, 50 channels 0.3802 
FastICA, 12 channels 0.6881 

ICA algorithm [8] 0.7965 
New algorithm 0.8447 

 

 
From the results in Tab. 1, 2, and 3, we can point out, 

that the proposed method achieved the highest value of 
average correlation coefficient in the cases where 
muscular artifacts were present in the recorded EEG. It 
appears that the overlearning did not occur and 
muscular artifacts were efficiently suppressed. In the 
case of the dimension reduction principle of 12 
channels, the overlearning was also suppressed, but 
lower value of correlation indicates the greater loss of 
useful EEG data. 

In the Fig. 3, several separated EEG and EMG 
components are shown indicating that the proposed 
algorithm successfully separated useful and artifactual 
contents of the measured data. 

 
Fig. 3: a) Original measured EEG dataset with 
artifact. b) Several separated EEG and EMG sources. 

Conclusion 
 

The proposed algorithm for the separation of 
muscular artifacts and EEG components was presented. 

The proposed algorithm maximizes the variance of 
variances of filtered principal components. The 
separated components are then classified with the use 
of three independent Bayesian classifiers to select the 
estimates of the muscular artifacts that are present in 
the EEG signals. Finally, the found artifacts are zeroed 
and all other useful signals are projected back to the 
space of measured signals. 

Since the BSS technique is based on the second order 
characteristics, it is robust to the overlearning. At the 
same time it is capable of separating EEG and EMG 
waveforms with the same quality as in the case of ICA 
algorithms which would need much larger datasets to 
function properly and avoid the stationary saddle 
points. 

From the comparison between used BSS methods it 
appears that the presented method performs better than 
the standard techniques, especially for the stronger 
artifacts. Thus, we believe that this algorithm can 
provide an improvement in the pre-processing of EEG 
recordings. 
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