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Abstract 
Acute ischemic stroke and intracranial hemorrhages (ICH) represent critical situations for the patient. Rapid accurate 
diagnosis and therapy are required to prevent serious lifelong consequences or death. In the case of suspected head 
circulatory pathology, computed tomography (CT) is often the first choice among imaging techniques because of its 
availability, speed and reliability. In order to refine and speed up the diagnostic process, advanced algorithms 
implemented in computer aided diagnosis systems are currently being developed. This paper presents approaches to an 
automatic ICH localization as a part of a research project aimed at the development of machine learning methods for the 
analysis of circulatory disorders in head CT scans. Three designed deep learning-based algorithms are described and 
compared for prediction of the exact position of ICH within a 3D CT scan, and in two cases also for classification into 
the sub-types. An objective evaluation of the methods is presented along with a discussion of the results. Further 
possibilities for circulatory diseases analysis in head CT scans using modern algorithms are also discussed. 
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Introduction 

The project focusing on the analysis of head computed 
tomography (CT) scans had its origins in the contractual 
cooperation of the Department of Biomedical 
Engineering (Brno University of Technology) with 
Philips. 

Since 2019, the analysis of head circulatory system 
disorders has been in progress, which has mainly been 
done by using modern machine learning methods. A part 
of the research aimed at automatic intracranial 
hemorrhages detection and localization within the CT 
scan—i.e., finding their position. This paper brings 
together outputs of the partial research aimed at 
localization. The design and comparison of three 
proposed deep learning-based methods are described. 

Motivat ion  

Head circulatory system pathologies represent critical 
situations with a high incidence that can cause serious 
lifelong consequences or even death of the patient. 
A distinction is made between hemorrhagic pathologies 
(hemorrhagic stroke or other intracranial hemorrhage) 
and non-hemorrhagic pathologies, where ischemic 
strokes belong [1]. In the case of cerebral hemorrhage, 

intraparenchymal (IPH) and intraventricular hemor-
rhages (IVH) are differentiated according to anatomical 
position. Extracerebral hemorrhage is divided into 
subdural (SDH), epidural (EDH) and subarachnoid 
(SAH) [2]. 

CT without administration of contrast agent is the first 
choice among imaging techniques in case of suspected 
vascular events due to its availability, speed and 
reliability [3, 4]. Acute hemorrhage appears as a brighter 
area in CT data compared to the surrounding brain 
tissue, whereas chronic hemorrhage is manifested by 
lower Hounsfield Unit (HU) values [2]. Ischemic stroke 
is characterized in the acute phase by loss of the ability 
to distinguish between gray and white matter and later 
by local hypo-attenuation of brain tissue. In the acute 
phase, a brighter thrombus is sometimes visible in the 
vessel [3]. 

Time plays a crucial role in cerebral circulatory 
pathologies and, in general, the prognosis is better the 
earlier a correct diagnosis is obtained, and appropriate 
therapy is planned [1]. However, traditional evaluation 
of 3D CT data is time consuming, demanding for 
concentration, and in some cases recognition of 
pathological structure can be problematic. For example, 
intracranial hemorrhages (ICH) may be confused with 
other brighter structures (e.g., calcifications or hyper-
cellular tumors) or may be missed due to artifact in the 
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image [5]. Early-stage ischemic disorders may generally 
be difficult to detect in non-contrast CT images and only 
become more apparent in the sub-acute phase [1, 3]. 
Magnetic resonance imaging (MRI)-based diffusion 
weighted imaging (DWI) can most reliably show its 
presence, but it is often not promptly available at the 
time of need [1, 3]. 

Nowadays, intensive development of computer-aided 
diagnosis algorithms has been in progress. The 
motivation is the reduction of the time needed for image 
evaluation, and also avoidance of misdiagnosis. Modern 
machine and especially deep learning-based methods 
are becoming dominant in many fields, including 
medical image analysis, due to their accuracy and 
efficiency [1]. 

Related  work  

According to the basic problem definition, the 
published algorithms may be divided into methods 
based on classification, localization and segmentation. 

A classification-based solution means assigning a CT 
image or its slice to a certain class. An example is [6] or 
[7], where the authors use well-known convolutional 
neural network (CNN) architectures to classify 2D slices 
as hemorrhagic or without lesion, respectively, and the 
type of ICH is determined. In [4], the classification 
network is combined with a bidirectional "Long Short-
Term Memory" (LSTM) module for embedding spatial 
information and the output is given by determining the 
type of the whole scan. 

Localization methods determine the position of the 
lesion—its centroid or delimiting area by an orthogonal 
bounding box (BB). Advantage of localization methods 
in comparison to classification-based ones is the direct 
information about the location of individual lesions. The 
authors [8] predict the BB of acute ischemia in non-
contrast CT slices. To do so, they use the well-known 
YOLO v3 detection network [9] in combination with 
a CNN classification model to reduce false positives. 

The segmentation leads to the labeling of all disease-
affected voxels. Main advantage is the precise 
knowledge of areas affected; however, these methods 
usually require previous time-consuming labeling on the 
level of individual pixels. For the segmentation of ICH 
in 2D slices, the well-known U-net architecture was 
used in [10]. A similar approach but in 3D is used in 
[11]. For the case of segmentation of ischemic regions 
and dense vessels (due to a presence of thrombus) in 
non-contrast CT images, the CNN model together with 
an anatomical atlas is used in [12] and the U-net 
architecture is used in [13]. 

Methods  

All the described algorithms use CNNs and are 
designed to localize ICH in brain CT scans. Besides, the 

first two methods also classify the type of hemorrhage. 
Input data are adjusted by contrast transformation 
according to three standard radiological windows: bone, 
brain and subdural; hence, three input channels to 
networks are created. 

 
Fig. 1: Block diagram of the three subsystems (for axial, 
sagittal and coronal planes) of the proposed method 
based on 3D localization and classification. On the 
right, the output for multiple hemorrhages is shown: 
IPH (blue), IVH (red) and ground truth (green). 

Exper imenta l  data  

Head CT scans together with medical annotations 
were used from two publicly available databases: the 
CQ500 [6] and the RSNA [14]. As CQ500 has originally 
only patient-level annotations, they were extended by 
a non-medical expert to the level of labeling individual 
axial, sagittal and coronal slices. The “ground-truth” 
3D BBs then result from the intersection of the 
perpendicular directions labeling. The classified 2D 
BBs for the CQ500 were obtained from the publicly 
available BHX extension [15]. 

Method b ased  on 3D local izat ion and  
c lassi f icat ion  

The algorithm [16] predicts 3D rectangular BB 
delimiting ICH in CT scans and also determines their 
types. It is based on the analysis of orthogonal 2D CT 
slices from mutually perpendicular anatomical planes 
(axial, sagittal and coronal). 

Input CT scans are preprocessed by 3D rotational 
alignment from [17], and further resampled to a slice 
thickness of 5 mm in the axial direction. The proposed 
system consists of three independent subsystems (one 
for each plane), which are then composed of a series of 
CNN classification models. A block diagram of the 
system is shown in Fig. 1. The inputs of each subsystem 
are slices from a particular plane. The first classification 
CNN determines whether a slice is hemorrhagic or not. 
In case of a positive output, subsequently, the slice 
enters binary classification CNNs determining the 
probability of the presence of each single ICH type. To 
incorporate 3D information, the resulting predicted class 
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Fig. 2: Block diagram of the localization algorithm based on weakly-supervised learning. The output is in the form of 
highlighting the positions of the lesions. 
 
for a particular slice is given by a weighted fusion of 
the predicted probabilities from the neighboring slices 
as well. 

After classifying each slice from each plane, the final 
three-dimensional labeled BBs are given by the inter-
section of the outputs for each direction. 

Detect ion n etwor ks for  loca l izat ion  and  
c lassi f icat ion  

In [18], two methods were proposed and compared 
using known detection networks for localizing ICH in 
2D axial slices along with determining the type of 
hemorrhage. The prediction of labeled 2D BB is 
performed by two architectures: Faster R-CNN [19] 
and YOLO v2 [20]. 

Both networks work in real time and consist of 
a feature extractor and a detection part. Faster R-CNN 
uses a so-called region proposal network, whose task is 
to suggest potential regions of searched objects from 
the feature space. The proposed regions are then fine-
tuned and classified [19]. On the other hand, YOLO v2 
is a single neural network that splits the input image 
into parts and then predicts the BBs and their classes 
[20]. 

Weakly-super v ised lear nin g-based m ethod  

The algorithm [21] works with 2D axial slices of the 
CT scan and determines the positional coordinates of 
each bleeding location. The goal was to create a CNN-
based detector using data with classification annota-
tions (i.e., the positions of the ICHs in the slices were 
unknown). 

The CNN classification model was trained to predict 
the probability of ICH presence in a slice and simulta-
neously a heat-map denoting the likelihood of ICH’s 
presence at specific image positions. In addition, 
a detector of local maxima in the map was created to 
provide positional coordinates of individual lesions. 
A block diagram of the algorithm is shown in Fig. 2. 

The generation of the likelihood map is provided 
either by the feature extractor itself (which is sub-
sequently followed by a global max-pooling layer) or 

by the so-called "attention" layer [22]. The detector 
then finds local maxima in the map with a value higher 
than a specified threshold and with a minimum distance 
from each other. To suppress irrelevant positions, an 
h-maxima transformation is performed. 

Results  

The CQ500 dataset was used for training and testing 
both the 3D localization method and the detection 
networks. Extended slice-level annotations were used 
for training the series of classifiers in the case of 3D 
method, on the other hand, BBs from BHX were used 
in the case of the standard detection networks. The 
RSNA data was used for training the models using 
weakly supervised learning. The method testing was 
performed on CQ500 with 2D BB annotations from 
BHX. 

The results of the mentioned methods (or their 
variants) are shown in Table 1. The sensitivity (Se) and 
positive predictive value (PPV) overall for localization 
of all types of hemorrhages (i.e., without determining 
the type) are evaluated. 

Table 1: The results achieved by the described 
methods. WS (MaxPool) denotes the weakly-supervised 
learning-based method in the variant of using a global 
max-pooling layer, WS (Att) represents the variant with 
an attention layer. Sensitivity (Se) and positive 
predictive value (PPV) are assessed overall for all ICH 
types. 
Method Se (%) PPV (%) 
3D 
Localization 57.3 77.1 

Faster R-CNN 69.1 76.5 
YOLO v2 57.3 69.9 
WS (MaxPool) 57.72 61.88 
WS (Att) 62.13 47.30 

To interpret and compare performance of proposed 
algorithms, different types of output need to be 
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considered. The true positive result of methods with 
BB-type output is given by a minimum Jaccard 
coefficient of 40% between predicted and annotated 
BB. In the case of centroid coordinates prediction, the 
result is correct as long as it is within the annotated BB. 
For further details on testing and statistical evaluation 
of the methods performance, see the original articles. 

In terms of computational complexity, the 3D 
localization method requires the most memory and 
computational time (about 2 minutes per patient). The 
remaining methods are fairly faster in processing 2D 
slices (at a most on the order of seconds per slice). 

Discussion  

In comparison to classification- or segmentation-
based methods, localization seems to be adequate in 
terms of providing not only information about the 
presence of pathologies, but also about their precise 
positions at the cost of relatively low time requirements 
for creating annotations. 

Despite the high variability in the shape, position and 
size of ICH (even within a single type), the above-
mentioned methods can localize the hemorrhage in the 
image. The advantage of the algorithms is the possi-
bility of localizing multiple simultaneous lesions, and 
in the case of the output in the form of a BB, also their 
classification with the exception of EDH. This type was 
excluded from the statistics in the case of the method 
based on 3D localization and detection networks due to 
the insufficient amount of data in the database (13 
scans in total). 

2D localization has some advantage over 3D BB, 
since the radiologist views the image primarily in the 
axial direction and 2D methods allow more accurate 
localization in slices showing the top and bottom 
margins of a single bleeding (In 3D, the BB has a size 
determined by the maximum diameter of a particular 
lesion). 

The advantage of the weakly-supervised learning-
based method, in addition to the accurate determination 
of the positions, lies in the generation of likelihood 
maps that carry information about the degree of 
suspected ICH occurrence possibility at particular 
positions. 

Despite the possibility of false results, the proposed 
methods have a high potential in the field of ICH 
diagnosis as they can minimize the probability of 
missing a bleeding by directly highlighting its position. 
In addition, incorporating the algorithm into a com-
puter aided diagnosis system can significantly reduce 
the time required for patient evaluation. 

Other  p oss ibi l it ies  o f  h ead CT data analysis  

Modern deep learning methods can process a large 
amount of information at once, which gives them the 

potential to efficiently solve some challenging tasks for 
humans. Further opportunities for ICH localization lie 
in the reduction of false positives in some uncertain 
findings encountered by radiologists. Examples of such 
bypassing include refining localization in areas fre-
quently affected by artifacts, differentiating ICH from 
calcifications or hypercellular tumors. 

Some ICHs often occur as a result of skull fractures, 
and therefore a joint analysis of these diseases seems to 
have great potential, as the problem of localizing 
fractures and differentiating them from skull sutures is 
not trivial. 

A planned extension of the project is the analysis of 
acute ischemic stroke. The use of modern algorithms 
for the analysis of non-contrast CT images, where the 
disease is not sufficiently distinct for humans, might be 
examined, as such imaging usually precedes further 
post-contrast scanning. The eventual successful recog-
nition and analysis of the disease in the native-phase 
image could significantly reduce the diagnostic time or 
reduce the radiation burden on the patient. 

Conclusion  

Non-contrast CT is the imaging method of first 
choice in suspected cerebral circulatory disorders and 
an automatic CT image analysis may lead to a more 
efficient diagnostic process. Deep learning-based 
localization approaches have a great potential in 
computed aided diagnostics due to their ability to 
provide information about precise position of a lesion 
while not requiring too time-consuming annotation 
process. Localization methods predicting output for 
individual axial slices seem more convenient for 
radiologists (in comparison to 3D BBs), as they provide 
more accurate information on the position and size of 
the blood present in the particular slice (especially in 
the margins of lesions). Besides, they imitate the 
standard process of manual scan evaluation. Weakly 
supervised approach might be highly beneficial, as 
positional annotation may be totally omitted and not 
only the deterministic positional information is 
provided, but also likelihood maps giving valuable 
parallel information to individual axial CT slices.  

Despite relatively low results, any of the localization 
methods can be a great stepping stone for developing 
a system that might make the process of diagnosis more 
efficient and precise. 
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