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Abstract 
Ischemic stroke is one of the most widely recognised cerebral pathologies. Its diagnosis starts with computed tomography 
(CT). However, a comprehensive understanding of the characteristics of the thrombus is necessary to establish an 
appropriate and less hazardous treatment. This study focusses on the analysis of thrombus heterogeneity in CT images 
of patients with acute ischemic stroke (AIS). The radiomic features of the thrombus were used to obtain the voxel 
distribution in the new feature space. It was then reduced using Principal Component Analysis (PCA) and subjected to 
visualisation techniques such as t-distributed Stochastic Neighbour Embedding (tSNE) and Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP). By evaluating the morphological structure of the 
clusters created within patients, it was possible to determine the number of thrombus components. This information could 
help the physician predict the burden on the patient during thrombectomy, such as the number of attempts required for 
recanalization. 
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Introduction 

Cerebrovascular accidents are categorized into 
ischemic and haemorrhagic types. Ischemic cerebral 
infarction (ICI) represents a pathological condition 
induced by disruption of the blood supply to a specific 
region of the brain due to the occlusion of the vessel 
responsible for the delivery of blood to that area. 
The primary diagnostic method when suspecting 
a cerebrovascular cerebral infarction is computed 
tomography (CT). On a non-contrast CT (nCT) scan, 
the thrombus may appear as a hyperdense artery sign 
(HAS). In contrast-enhanced CT angiography (CTA), 
the thrombus can be identified as an interruption in the 
contrast-enhanced vessel. Following the confirmation 
of ICI, it becomes essential to select an appropriate 
therapeutic approach, including endovascular mechani-
cal thrombectomy and intravenous thrombolysis. 

However, to our knowledge, no standardised approach 
has been established for therapy selection. 

One of the key factors to achieve a better prognosis 
for the patient is time and accurate determination of 
therapy. Currently, treatment involves the adminis-
tration of thrombolytic drugs immediately after the 
exclusion of haemorrhagic stroke. In the cases where 
this treatment is found to be ineffective, an 
endovascular mechanical thrombectomy is followed. 
However, the time that elapses while waiting for the 
assessment of thrombolysis effectiveness can have 
a crucial impact on the patient's future quality of life. 
Therefore, recent research has focused on methods that 
allow for earlier determination of the appropriate 
therapy for the patient based on CT images. 

Radiomics [1] is a method that extracts a large 
number of features from radiological image data that 
are not observable by the human eye. These features 
are acquired through a wide spectrum of methods, such  
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as first-order and second-order statistical operators, 
Gaussian and Laplacian filtration, or wavelet 
transformation [2]. Radiomic analysis is most 
commonly used in the study of oncological 
diseases [3]. However, recent research has also begun 
to focus on radiomics in patients with ischemic stroke. 
In the article [4], the authors have successfully 
identified a strong correlation between five radiomic 
features, obtained using wavelet transformation and 
haemorrhagic transformation in patients with ICI. The 
authors of [5] have unveiled specific relationships 
between thrombus texture, its volume, reperfusion, and 
the number of attempts required for successful 
reperfusion. 

Many of the radiomic features are associated with 
thrombus heterogeneity. In the article [1], the authors 
identified a relationship between the heterogeneity 
features of the thrombus obtained using a combination 
of CTA and nCT and early reperfusion using 
intravenous alteplase. The authors of [6] highlighted 
the association between 12 heterogeneity features and 
the First Pass Effect (FPE), with these features, 
according to their findings, being independent 
predictors of FPE. 

However, to the best of our knowledge, the thrombus 
morphology with the use of radiomic features of 
heterogeneity at the level of individual voxels obtained 
from nCT data have not been investigated so far. 
The discovery of connections between thrombus 
heterogeneity and voxel distribution in the feature 
space could contribute to a deeper understanding of 
acquired CT data and subsequently facilitate the 
selection of the appropriate therapy for each patient. 
Therefore, our study is focused on analysis of local 
thrombus heterogeneity by extracting local radiomic 
features for individual thrombus voxels and conducting 
their cluster analysis using both hierarchical and non-
hierarchical methods. 

Materials and Methods 

Data were acquired using a Brilliance iCT 256 
scanner (Phillips Medical Systems, Eindhoven, 
Netherlands) following the standard clinical protocol 
for acute ischemic events, which did not require 
approval from an ethical committee. The data included 
native non-contrast CT (nCT), covering the region 
from the skull base to the vertex. All slices had 
a thickness of 0.9 mm with axial overlap. Informed 
consent was obtained from all participants, and all 
procedures conducted in human studies adhered to 
ethical standards set by institutional and/or national 
research committees and were in compliance with the 

Helsinki Declaration of 1964 and its subsequent 
amendments. 

This contribution aims to uncover relationships 
among patient’s thrombi and their local areas based on 
extracted features. Initially, a representative (binary) 
segmentation mask of the thrombus was created. This 
process involved independent segmentation masks 
provided by six annotators, including radiologists with 
extensive experience, practising radiologists, and 
a trained biomedical engineer. The final mask was 
generated by majority agreement among the 
annotators. If a minimum of three annotators agreed 
that a particular voxel was part of the thrombus, that 
voxel was labelled as its part in the resulting 
representative mask. 

Based on this mask, local radiomic features were 
extracted for each thrombus voxel using the 
PyRadiomics package [7]. Only features related to 
thrombus heterogeneity, such as variance, entropy, or 
the range of values in the voxel's neighbourhood, were 
utilised. Voxels for which some features could not be 
computed were subsequently removed. Subsequently, 
the features were dimensionally reduced using 
Principal Component Analysis (PCA). The principal 
components (PCs) were then included in further 
visualization analysis using the Uniform Manifold 
Approximation and Projection for Dimension 
Reduction (UMAP) method and the t-distributed 
Stochastic Neighbour Embedding (tSNE) method. For 
the UMAP method, the number of output components 
was set to 2, the minimum distance was set to 0.1, and 
the Euclidean distance metric was used. For the tSNE 
method, the perplexity value was empirically set to 40, 
which provided the successful separation of clusters. 

Manual thrombus segmentation was performed using 
the Medical Imaging Interaction Toolkit (MITK) 
software [8], version v2022.10. The entire analyses, 
from obtaining the representative thrombus mask to 
cluster analysis, was implemented in Python 3.7.9, 
utilising the PyRadiomics package version 3.0.1a1 [7], 
umap-learn 0.5.3 [9], and sklearn 1.0.2 [10] libraries. 

Results 

For each voxel lying under thrombus mask, 1205 
image features were extracted. Due to the high 
dimensionality of this feature space, which is often 
characterised by a significant degree of inter-
dependence among the features, dimensionality 
reduction was performed using PCA. The distribution 
of voxels from nCT scans of all patients based on the 
first two principal components obtained by PCA is 
depicted in Fig. 1.
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Fig. 1: Visualisation of the distribution of patient 
voxels (colour-coded) based on PCs obtained through 
PCA using the eight patients as input. The variance of 
PC1 was explained by the patient represented by a blue 
colour. 

Due to the high variance explained by the features in 
the blue-labelled patient, who exhibits a prominent 
Hyperdense Artery Sign (HAS) distinct from the 
others, was excluded from further analysis. Following 
the removal of this patient, PCA was applied again, and 
the results are illustrated in Fig. 2. 

 
Fig. 2: Visualisation of the distribution of patient 
voxels (colour coded) based on PCs obtained through 
PCA after the exclusion of the patient labelled blue due 
to their significant variance, which had a substantial 
impact on the overall variability. 

After applying PCA, no distinct clusters were 
observed. Therefore, 86 principal components, 
covering 90% of the total feature variability, were 
selected as inputs for the tSNE and UMAP methods. 
The resulting distribution of voxels from individual 

patients based on the components obtained through 
these methods can be seen in Fig. 3 and Fig. 4. 

 
Fig. 3: Visualisation of the results after applying the 
tSNE method to PCs obtained through the PCA. 
Different colours represent voxels from individual 
patients. Numbers 1 and 2 in the graphs indicate the 
positions from which the voxels were selected for 
further analysis. 

For some patients, such as the one labelled in green 
and purple, a concentration of all thrombus voxels into 
a single cluster is evident when using both methods. 
Since these features describe heterogeneity, it can be 
assumed that the thrombi in these patients exhibit 
a high degree of homogeneity and are not composed of 
significantly different parts. Conversely, for the patient 
labelled in yellow, it is apparent that two separate 
clusters are formed using the tSNE, whereas in the 
visualisation of the new feature space obtained using 
the UMAP method, all voxels within this patient's 
thrombus are in a single cluster. A more detailed 
analysis focussing on the voxels within the individual 
sub-clusters in the tSNE method could potentially 
reveal whether this represents a significant separation 
within the thrombus. 

Another intriguing aspect that can be observed in the 
results obtained in Fig. 3 and Fig. 4 is the division of 
the thrombus in the patient labelled in red into at least 
two clusters in both methods. In the tSNE method, 
there is a small cluster on the left side of the graph and 
a larger cluster on the right. In Fig. 3 and Fig. 4, it 
might initially appear that this cluster is composed of 
several smaller clusters. Similarly, in the graph that 
displays the results using the UMAP method, a smaller, 
isolated cluster of the red-labelled patient's thrombus is 
located at the top of the graph, while the second large 
cluster, or possibly other smaller clusters, is located 
below it.
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Fig. 4: Visualisation of the results after applying the 
UMAP method. to PCs obtained through the PCA. 
Different colours represent voxels from individual 
patients. Numbers 1 and 2 in the graphs indicate the 
positions from which the voxels were selected for 
further analysis. 

For a closer analysis of the clusters, central voxels 
from two clusters were selected. The positions of these 
two voxels for further analysis can be seen in Fig. 3 and 
Fig. 4, marked with the numbers 1 and 2 in both graphs. 
However, these represent the same voxels in the 
original space. In Fig. 5, you can observe the positions 
of these two voxels on the thrombus heterogeneity 
map. It is evident that these two clusters represent 
different parts of the thrombus, with the cluster marked 
by the red point on the heterogeneity map and also 
labelled as number 2 in the resulting graphs using the 
UMAP and tSNE methods representing an area of the 
thrombus with high heterogeneity. Conversely, the area 
of the thrombus represented by cluster number 1 and 
the green point on the heterogeneity map indicates 
a more homogeneous region. 

 
Fig. 5: Heterogeneity map with highlighted positions 
of central points from clusters. The green point 
represents voxel 1, and the red point represents voxel 
2 in axial plane (A) and coronal plane (B). 

Discussion  

Analysis has revealed that the number of clusters 
obtained through the features of heterogeneity and 
subsequent analysis may directly correlate with the 
number of thrombus regions with different 
compositions. This is likely related to the number of 
attempts required for successful recanalization in 
clinical practice, the chemical composition of the 
thrombus, or its mechanical properties. 

This study has several limitations. The first is the 
small size of the dataset, which consisted of only eight 
patients. The second limitation is the feature extraction 
using a representative mask. When utilising features 
extracted separately for each annotator, it would likely 
be possible to discover features that are sensitive to 
labelling noise, which could provide deeper insights 
into the relationships among the features. 

Conclusion 

The study focused on the analysis of thrombus 
heterogeneity in CT images of patients with ischemic 
cerebrovascular stroke. Using radiomic analysis and 
Principal Component Analysis (PCA), reduced 
features related to thrombus heterogeneity were 
obtained. The results showed varying distributions of 
voxels in the feature space, with multiple clusters 
forming in some patients. In contrast, in other patients, 
only one cluster was formed, attributed to the 
uniformity of the thrombus. In cases where the 
thrombus was divided into multiple clusters, their 
different character was subsequently confirmed. 

Therefore, future studies should emphasise the 
significance and clinical impact of thrombus areas 
divided into clusters, which could assist in predicting 
the number of attempts required for successful 
recanalization, as well as provide insights into the 
mechanical properties and chemical composition of the 
thrombus. This, in turn, could facilitate a medical 
physician’s decision in selecting appropriate treatment 
options. 
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