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Abstract 
Photoplethysmography (PPG) is a widely recognized non-invasive optical technique for monitoring blood volume 
changes. Recently, PPG signals have gained prominence in healthcare applications, including the detection of cardiac 
arrhythmias. Cardiac arrhythmias represent a significant global health challenge, with particular focus on identifying 
atrial fibrillation (AF), the most prevalent type. Accurate detection of systolic peaks in PPG signals is crucial for 
arrhythmia detection and other applications such as heart rate estimation and heart rate variability analysis. Despite the 
high accuracy of existing beat detection methods in healthy subjects, the performance in the presence of cardiac 
arrhythmias is lower. This study employs a deep learning method to enhance the detection of systolic peaks in PPG 
signals, even in the presence of AF. The model was trained on a dataset comprising 2,477 10-second PPG segments with 
over 37,000 annotated PPG peaks, including data from patients with AF. Our model achieved an F1 score of 97.3% on 
the test dataset and F1 score of 94.8% on the test dataset when considering only patients with AF. 
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Introduction 

Photoplethysmography (PPG) is a widely used, non-
invasive optical method for monitoring changes in blood 
volume. In recent years, PPG signals have become 
increasingly popular for assessing various physiological 
parameters, such as heart rate (HR), blood pressure 
(BP), blood oxygen saturation (SpO2), perfusion index 
(PI), and vessel compliance [1]. They are among the 
most utilized signals in wearable health assessment, 
aligning with the growing prevalence of smart devices 
and presenting a substantial opportunity to expand 
health monitoring to a wider population [2]. 

It has been found that PPG can be utilized to detect 
various cardiac arrhythmias [3]. Cardiac arrhythmias 
pose a considerable health challenge worldwide. With 
the emergence of wearable devices incorporating PPG, 
there is a chance to screen vast populations, potentially 
enabling the early identification of abnormal rhythms 
and improving prevention. 

Extensive research has focused on detecting atrial 
fibrillation (AF), the most common cardiac arrhythmia, 
primarily through the analysis of irregularities in 
interbeat intervals (IBIs) based on detected systolic PPG 
peaks [4]. Therefore, accurate peak detection in PPG 
signals is crucial, as it helps us to better understand 
various aspects of heart health. 

Although existing beat detectors demonstrate high 
accuracy in healthy subjects [5], their performance in the 
presence of various cardiac arrhythmias remains 
understudied. Research on the accuracy of PPG beat 
detection during AF is sparse. Väliaho et al. [6] achieved 
an F1 score of 93.5% for peak detection in a cohort of 
patients with AF. 

In this study, we are using deep learning model to 
detect systolic PPG peaks. By training our model on 
a dataset that includes healthy signals and cases of AF, 
we aim for accurate peak detection in both healthy and 
AF-affected individuals. Furthermore, we compare the 
results of our proposed algorithm with the PPG peak 
detectors from the HeartPy toolkit [7, 8]. 
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Dataset 

In this study, we are using three independent datasets 
containing PPG signals from a total of 114 patients. 
The data include records from the publicly available 
CapnoBase database (University of British Columbia, 
Vancouver, Canada), where signals from 42 patients 
were acquired during elective surgery and routine 
anesthesia [9, 10]. The AF Perform database contains 
data with AF from critically ill patients, measured using 
a bedside monitor [5, 11, 12]. Data from the private 
database were measured on 53 healthy volunteers 
at the Department of Biomedical Engineering, Brno 
University of Technology, Czech Republic, using 
smartphone. All participants provided written informed 
consent, and the research was approved by the Ethical 
Committee of the Faculty of Electrical Engineering 
and Communication for Biomedical Research, Brno 
University of Technology. 

For each PPG signal, a simultaneously recorded 
electrocardiogram (ECG) was available as a reference. 
Both PPG and ECG signals were aligned peak-to-peak 
and divided into 10-second segments. A total of 3,915 
10-second segments were obtained, of which 52% 
contained AF. 

Records from CapnoBase and the private database 
already contained reference peaks marked based on the 
QRS complexes present in the ECG. However, for the 
PPG data from AF Perform database, the peaks were 
manually annotated based on the QRS complexes in the 
ECG. Fig. 1 shows two cases of AF along with their 
peak-to-peak aligned ECG and PPG signals. 

 
Fig. 1: ECG and PPG signals during the presence of 
AF. 

The dataset was partitioned into training, validation, 
and testing subsets (Table 1). All these subsets contain 
data from all databases, while ensuring that data from 
individual patients remain segregated across training, 
validation, and test sets. 

Table 1: Number of subjects, 10s PPG segments, and 
PPG reference beats for the training, validation, and 
test sets. 

Dataset Subjects 10s segments Peaks 
Training 68 2,477 37,163 
Validation 23 719 8,804 
Test 23 719 9,743 

The label vector for each recording was created based 
on reference peak marks. Samples within a 0.1 s 
(equivalent to 12 samples) proximity to both the left and 
right sides of the peak annotations were identified as 
belonging to the PPG peak class (with a value of 1), 
whereas all other samples were classified as non-PPG 
peaks (with a value of 0). The input to the network was 
the PPG signal and its corresponding label vector. 

Methods 

In this study, we employed a deep learning technique 
with U-Net architecture to detect systolic peaks in PPG 
signals. The U-Net architecture consists of an encoder 
and a decoder and resembles the shape of the letter “U”. 
The U-Net was originally developed by Ronnenberger 
et al. [13] for image segmentation. However, for this 
task, all layers were modified to operate in a one-
dimensional form. The input to the model is 10-second-
long PPG segment (1,250 samples) and a label vector 
(1,250 samples). The network output is an array of size 
2×1,250, corresponding to the PPG peak probability and 
non-PPG peak probability for each analyzed segment. 

Preprocess ing 
All signals were resampled to 125 Hz and divided into 

10-second segments. To ensure robustness and minimal 
preprocessing, the signals were detrended and 
normalized to a range from 0 to 1. Data augmentation 
was then performed for each record by adding additive 
Gaussian noise. 

Neura l  Networ k Arch itecture  

In this study, we adopted the U-Net architecture 
proposed by Koscova et al. [14]. This architecture 
comprises four reduction blocks and four expansion 
blocks. The difference between the mentioned 
architecture and our architecture is the different number 
of filters in the convolutional layers and the size of the 
kernels in the convolutional layers. The number of filters 
in each convolutional layer was set to 16, 32, 64, 128, 
and 256. The last layer in the network was 
a convolutional layer with a softmax activation 
function. The output consists of two mentioned 
probability classes. 
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To train the model, we employed the Adam 
optimization algorithm with a learning rate of 0.001. 
The total number of epochs used for training was 31, 
with a batch size of 8. The loss function was based on 
the Dice Coefficient. Training was performed in Python 
(version 3.12.6) using the PyTorch library. 

Postprocess in g 
The output from the model consisted of two 

probability classes with a length equivalent to the input 
signal. Specifically, the probabilities for class 1 
(indicating the presence of a peak) were selected as the 
final output. If the probability exceeded the threshold of 
0.97 and persisted for a duration of 12 samples (both 
determined based on the validation set), it was identified 
as the peak region. The final peak position was then 
determined to be the center of this peak region (Fig. 2). 

 
Fig. 2: Label vector (green), probability of class 1—
output from the network (red signal), and final positions 
of the detected peaks (blue dots). 

Accur acy assessmen t  

The detector performance was evaluated using 
sensitivity (Se), positive predictive value (PPV), and 
F1-score (F1). Se represents the proportion of correctly 
detected peaks relative to the total number of reference 
peaks. PPV indicates the proportion of correctly 
detected peaks among all detected peaks. F1 is the 
harmonic mean of the Se and PPV. A peak was 
considered correct if its position fell within a tolerance 
of ±10 samples of the reference beat. 

Results 

Table 2 presents the model performance (F1, PPV, 
and Se) for the training, validation, and test sets. 
Additionally, model performance was evaluated solely 
on data containing AF. 

Subsequently, the results from the proposed method 
were compared with the Elgendi’s and Bishop’s 
detectors from the HeartPy Toolkit, Python Heart Rate 
Analysis Toolkit, designed to handle PPG data [7, 8]. 
The same metrics and tolerance of ± 10 samples from 
the reference beat were used to evaluate the performance 

of these detectors. A comparison between the proposed 
method and these detectors is presented in Table 3. 

Table 2: Results of the proposed PPG peak detector. 
Dataset F1 (%) PPV (%) Se (%) 
Training 97.7 97.8 97.8 
Validation 97.1 95.1 99.2 
Test 97.3 97.6 97.1 
Test (AF) 94.8 96.1 94.0 

Table 3: Results of PPG peak detectors from HeartPy. 
Dataset F1 (%) PPV (%) Se (%) 
Bishop (test) 93.4 97 89.5 
Elgendi (test) 95.1 97.2 93.2 
Bishop (test AF) 91.3 95.8 86.9 
Elgendi (test AF) 93.2 95.7 91.2 

Discussion 

Our proposed method achieved better results on the 
test dataset (F1 = 97.3%) compared to detectors from 
the HeartPy library (Bishop’s F1 = 93.4%, Elgendi’s 
F1 = 95%). Furthermore, it is worth mentioning that Se 
increased by approximately 4% compared to Elgendi’s 
detector and by almost 8% compared to Bishop’s 
detector. 

Our method achieved better results on the test dataset 
containing only AF records (F1 = 94.8%) compared to 
Bishop (91.3%) and Elgendi (93.2%). 

In Fig. 3, there is an example of PPG peak detection 
using our algorithm (blue dot), Elgendi’s (green square), 
and Bishop’s (blue plus) algorithms. The annotations 
(ground truth) are marked with a red cross. The signals 
were the same as those shown in Fig. 1. 

 
Fig. 3: Comparison of PPG peak detectors; red cross: 
annotations, blue dot: our detector, blue plus: Bishop, 
green square: Elgendi. 
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Based on the analysis of our results, we found that 
false negatives often occur because the reference peak is 
located at the beginning/end of the 10-second segment. 
However, the output probability (class 1) does not yet 
have sufficient duration (12 samples) to meet the criteria 
to be considered a peak by the proposed algorithm 
(Fig. 4). This limitation will be simply resolved in future 
studies. 

 
Fig. 4: Undetected PPG peak at the beginning of the 
segment; output probability to class 1 (red), detected 
PPG peaks after post-processing (blue dots). 

A limitation of this study was the small number of 
patients (114). In future research, we aim to train the 
model on a database containing data from more patients 
with various cardiac arrhythmias beyond AF. For 
example, the accurate detection of premature atrial 
contractions and premature ventricular contractions 
could subsequently lead to the reliable classification of 
individual beats and thus to the classification of various 
types of arrhythmias. 

Conclusion 

This paper addresses the challenge of detecting 
systolic peaks in PPG signals, which can be challenging 
in the presence of various arrhythmias. We proposed 
a method for systolic PPG peak detection, achieving an 
F1 score of 97.3% on a dataset containing signals from 
both healthy and AF individuals, and an F1 score of 
94.8% on a dataset containing only AF patient data. 
In comparison with other methods discussed in our 
paper, our proposed method achieved better results in 
both cases. 

These results demonstrate the potential for clinical 
application, particularly for enhancing the accuracy of 
arrhythmia detection. Accurate identification of systolic 
peaks in PPG signals is crucial for reliable arrhythmia 
diagnosis, and our method could contribute to improved 
diagnostic tools for AF as well as other arrhythmias that 
depend on precise PPG peak detection. However, 
a limitation of this study was the number of patients 
involved. In future, we aim to expand the dataset to 
include a larger number of patients and incorporate 
additional cardiac arrhythmias. 
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