ORIGINAL RESEARCH

IMPROVED SYSTOLIC PEAK DETECTION IN
PHOTOPLETHYSMOGRAPHY SIGNALS: FOCUS ON ATRIAL
FIBRILLATION

Eniko Vargova, Andrea Nemcova

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication,
Brno University of Technology, Brno, Czech Republic

Abstract

Photoplethysmography (PPG) is a widely recognized non-invasive optical technique for monitoring blood volume
changes. Recently, PPG signals have gained prominence in healthcare applications, including the detection of cardiac
arrhythmias. Cardiac arrhythmias represent a significant global health challenge, with particular focus on identifying
atrial fibrillation (AF), the most prevalent type. Accurate detection of systolic peaks in PPG signals is crucial for
arrhythmia detection and other applications such as heart rate estimation and heart rate variability analysis. Despite the
high accuracy of existing beat detection methods in healthy subjects, the performance in the presence of cardiac
arrhythmias is lower. This study employs a deep learning method to enhance the detection of systolic peaks in PPG
signals, even in the presence of AF. The model was trained on a dataset comprising 2,477 10-second PPG segments with
over 37,000 annotated PPG peaks, including data from patients with AF. Our model achieved an F1 score of 97.3% on

the test dataset and F1 score of 94.8% on the test dataset when considering only patients with AF.
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Introduction

Photoplethysmography (PPG) is a widely used, non-
invasive optical method for monitoring changes in blood
volume. In recent years, PPG signals have become
increasingly popular for assessing various physiological
parameters, such as heart rate (HR), blood pressure
(BP), blood oxygen saturation (SpO.), perfusion index
(PI), and vessel compliance [1]. They are among the
most utilized signals in wearable health assessment,
aligning with the growing prevalence of smart devices
and presenting a substantial opportunity to expand
health monitoring to a wider population [2].

It has been found that PPG can be utilized to detect
various cardiac arrhythmias [3]. Cardiac arrhythmias
pose a considerable health challenge worldwide. With
the emergence of wearable devices incorporating PPG,
there is a chance to screen vast populations, potentially
enabling the early identification of abnormal rhythms
and improving prevention.

Extensive research has focused on detecting atrial
fibrillation (AF), the most common cardiac arrhythmia,
primarily through the analysis of irregularities in
interbeat intervals (IBIs) based on detected systolic PPG
peaks [4]. Therefore, accurate peak detection in PPG
signals is crucial, as it helps us to better understand
various aspects of heart health.

Although existing beat detectors demonstrate high
accuracy in healthy subjects [5], their performance in the
presence of various cardiac arrhythmias remains
understudied. Research on the accuracy of PPG beat
detection during AF is sparse. Viliaho et al. [6] achieved
an F'[ score of 93.5% for peak detection in a cohort of
patients with AF.

In this study, we are using deep learning model to
detect systolic PPG peaks. By training our model on
a dataset that includes healthy signals and cases of AF,
we aim for accurate peak detection in both healthy and
AF-affected individuals. Furthermore, we compare the
results of our proposed algorithm with the PPG peak
detectors from the HeartPy toolkit [7, 8].
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Dataset

In this study, we are using three independent datasets
containing PPG signals from a total of 114 patients.
The data include records from the publicly available
CapnoBase database (University of British Columbia,
Vancouver, Canada), where signals from 42 patients
were acquired during elective surgery and routine
anesthesia [9, 10]. The AF Perform database contains
data with AF from critically ill patients, measured using
a bedside monitor [5, 11, 12]. Data from the private
database were measured on 53 healthy volunteers
at the Department of Biomedical Engineering, Brno
University of Technology, Czech Republic, using
smartphone. All participants provided written informed
consent, and the research was approved by the Ethical
Committee of the Faculty of Electrical Engineering
and Communication for Biomedical Research, Brno
University of Technology.

For each PPG signal, a simultaneously recorded
electrocardiogram (ECG) was available as a reference.
Both PPG and ECG signals were aligned peak-to-peak
and divided into 10-second segments. A total of 3,915
10-second segments were obtained, of which 52%
contained AF.

Records from CapnoBase and the private database
already contained reference peaks marked based on the
QRS complexes present in the ECG. However, for the
PPG data from AF Perform database, the peaks were
manually annotated based on the QRS complexes in the
ECG. Fig. 1 shows two cases of AF along with their
peak-to-peak aligned ECG and PPG signals.
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Fig. 1: ECG and PPG signals during the presence of
AF.

The dataset was partitioned into training, validation,
and testing subsets (Table 1). All these subsets contain
data from all databases, while ensuring that data from
individual patients remain segregated across training,
validation, and test sets.

Table 1: Number of subjects, 10s PPG segments, and
PPG reference beats for the training, validation, and
test sets.

Dataset Subjects 10s segments Peaks
Training 68 2,477 37,163
Validation 23 719 8,804
Test 23 719 9,743

The label vector for each recording was created based
on reference peak marks. Samples within a 0.1s
(equivalent to 12 samples) proximity to both the left and
right sides of the peak annotations were identified as
belonging to the PPG peak class (with a value of 1),
whereas all other samples were classified as non-PPG
peaks (with a value of 0). The input to the network was
the PPG signal and its corresponding label vector.

Methods

In this study, we employed a deep learning technique
with U-Net architecture to detect systolic peaks in PPG
signals. The U-Net architecture consists of an encoder
and a decoder and resembles the shape of the letter “U”.
The U-Net was originally developed by Ronnenberger
et al. [13] for image segmentation. However, for this
task, all layers were modified to operate in a one-
dimensional form. The input to the model is 10-second-
long PPG segment (1,250 samples) and a label vector
(1,250 samples). The network output is an array of size
2x1,250, corresponding to the PPG peak probability and
non-PPG peak probability for each analyzed segment.

Preprocessing

All signals were resampled to 125 Hz and divided into
10-second segments. To ensure robustness and minimal
preprocessing, the signals were detrended and
normalized to a range from O to 1. Data augmentation
was then performed for each record by adding additive
Gaussian noise.

Neural Network Architecture

In this study, we adopted the U-Net architecture
proposed by Koscova et al. [14]. This architecture
comprises four reduction blocks and four expansion
blocks. The difference between the mentioned
architecture and our architecture is the different number
of filters in the convolutional layers and the size of the
kernels in the convolutional layers. The number of filters
in each convolutional layer was set to 16, 32, 64, 128,
and 256. The last layer in the network was
a convolutional layer with a softmax activation
function. The output consists of two mentioned
probability classes.

Lekar a technika — Clinician and Technology 2024, vol. 54(4), pp. 139-143, DOI: 10.14311/CTJ.2024.4.05

ISSN 0301-5491 (Print), ISSN 2336-5552 (Online)



https://doi.org/10.14311/CTJ.2024.4.05

ORIGINAL RESEARCH

To train the model, we employed the Adam
optimization algorithm with a learning rate of 0.001.
The total number of epochs used for training was 31,
with a batch size of 8. The loss function was based on
the Dice Coefficient. Training was performed in Python
(version 3.12.6) using the PyTorch library.

Postprocessing

The output from the model consisted of two
probability classes with a length equivalent to the input
signal. Specifically, the probabilities for class 1
(indicating the presence of a peak) were selected as the
final output. If the probability exceeded the threshold of
0.97 and persisted for a duration of 12 samples (both
determined based on the validation set), it was identified
as the peak region. The final peak position was then
determined to be the center of this peak region (Fig. 2).
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Fig. 2: Label vector (green), probability of class 1—
output from the network (red signal), and final positions
of the detected peaks (blue dots).

Accuracy assessment

The detector performance was evaluated using
sensitivity (Se), positive predictive value (PPV), and
Fl-score (F1). Se represents the proportion of correctly
detected peaks relative to the total number of reference
peaks. PPV indicates the proportion of correctly
detected peaks among all detected peaks. FI is the
harmonic mean of the Se and PPV. A peak was
considered correct if its position fell within a tolerance
of £10 samples of the reference beat.

Results

Table 2 presents the model performance (F1I, PPV,
and Se) for the training, validation, and test sets.
Additionally, model performance was evaluated solely
on data containing AF.

Subsequently, the results from the proposed method
were compared with the Elgendi’s and Bishop’s
detectors from the HeartPy Toolkit, Python Heart Rate
Analysis Toolkit, designed to handle PPG data [7, §].
The same metrics and tolerance of = 10 samples from
the reference beat were used to evaluate the performance

of these detectors. A comparison between the proposed
method and these detectors is presented in Table 3.

Table 2: Results of the proposed PPG peak detector.

Dataset F1 (%) PPV (%) Se (%)
Training 97.7 97.8 97.8
Validation 97.1 95.1 99.2
Test 97.3 97.6 97.1
Test (AF) 94.8 96.1 94.0

Table 3: Results of PPG peak detectors from HeartPy.

Dataset F1 (%) PPV (%) Se (%)

Bishop (test) 93.4 97 89.5

Elgendi (test) 95.1 97.2 93.2

Bishop (test AF) 91.3 95.8 86.9

Elgendi (test AF) 93.2 95.7 91.2
Discussion

Our proposed method achieved better results on the
test dataset (F/ =97.3%) compared to detectors from
the HeartPy library (Bishop’s F/ =93.4%, Elgendi’s
F1=95%). Furthermore, it is worth mentioning that Se
increased by approximately 4% compared to Elgendi’s
detector and by almost 8% compared to Bishop’s
detector.

Our method achieved better results on the test dataset
containing only AF records (FI = 94.8%) compared to
Bishop (91.3%) and Elgendi (93.2%).

In Fig. 3, there is an example of PPG peak detection
using our algorithm (blue dot), Elgendi’s (green square),
and Bishop’s (blue plus) algorithms. The annotations
(ground truth) are marked with a red cross. The signals
were the same as those shown in Fig. 1.
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Fig. 3: Comparison of PPG peak detectors, red cross:
annotations, blue dot: our detector, blue plus: Bishop,
green square: Elgendi.
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Based on the analysis of our results, we found that
false negatives often occur because the reference peak is
located at the beginning/end of the 10-second segment.
However, the output probability (class 1) does not yet
have sufficient duration (12 samples) to meet the criteria
to be considered a peak by the proposed algorithm
(Fig. 4). This limitation will be simply resolved in future
studies.
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Fig. 4. Undetected PPG peak at the beginning of the
segment; output probability to class 1 (red), detected
PPG peaks after post-processing (blue dots).

A limitation of this study was the small number of
patients (114). In future research, we aim to train the
model on a database containing data from more patients
with various cardiac arrhythmias beyond AF. For
example, the accurate detection of premature atrial
contractions and premature ventricular contractions
could subsequently lead to the reliable classification of
individual beats and thus to the classification of various
types of arrhythmias.

Conclusion

This paper addresses the challenge of detecting
systolic peaks in PPG signals, which can be challenging
in the presence of various arrhythmias. We proposed
a method for systolic PPG peak detection, achieving an
FI score of 97.3% on a dataset containing signals from
both healthy and AF individuals, and an FI score of
94.8% on a dataset containing only AF patient data.
In comparison with other methods discussed in our
paper, our proposed method achieved better results in
both cases.

These results demonstrate the potential for clinical
application, particularly for enhancing the accuracy of
arrhythmia detection. Accurate identification of systolic
peaks in PPG signals is crucial for reliable arrhythmia
diagnosis, and our method could contribute to improved
diagnostic tools for AF as well as other arrhythmias that
depend on precise PPG peak detection. However,
a limitation of this study was the number of patients
involved. In future, we aim to expand the dataset to
include a larger number of patients and incorporate
additional cardiac arrhythmias.
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