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ABSTRACT
This work follows up the previous work [1] regarding the used methodology in the field of passive safety, ie. crash testing. 
The work is based on experience gained in the Active Lateral Impact Simulator (ALIS) project and describes complete process. 
The main focus has been given to the fine‑tuning of the boundary conditions and loading of the system in order to ensure correct 
biomechanical loads. 
KEYWORDS: CRASH TEST, FINITE ELEMENT METHOD, DESIGN OF EXPERIMENT, BIOMECHANICAL LOADS, DYCOT, ALIS

SHRNUTÍ
Tato práce navazuje na předešlé příspěvky [1] týkající se metodiky v oblasti pasivní bezpečnosti, a zejména crash testování. Tento 
článek vychází ze zkušenosti získané v rámci projektu bočních nárazů a za použití systému Active Lateral Impact Simulator (ALIS) 
a popisuje celý postup. Hlavní důraz je kladen na jemné ladění počátečních podmínek a náhradního zatížení působícího na celý 
systém a k dosažení požadovaných biomechanických kritérií.
KLÍČOVÁ SLOVA: NÁRAZOVÁ ZKOUŠKA, METODA KONEČNÝCH PRVKŮ, NÁVRH EXPERIMENTU, BIOMECHANICKÉ ZATÍŽENÍ, 
DYCOT, ALIS 

1. INTRODUCTION
This work proposes a new advanced approach of combined virtual 
and physical testing. The main idea is to reduce development 
time and associated costs by using sled testing which used 
to be used mainly for physical simulation of frontal crashes. 
Simulation of side crash in sled environment is not a brand‑new 
topic, but certainly very complex one. This method is not really 
used on regular basis especially due to predictability issues and 
low accuracy. This work presents new approach of combination 
both virtual and physical testing. The whole process starts with 
full crash simulation, goes through conversion of virtual model 
to reduced sled model, sled testing and finally is wrapped up 
with full vehicle crash.

2. MAIN SECTION
2.1 DYCOT
TÜV SÜD Czech has recently invested a large sum to test lab 
equipped with sled system (catapult) – DYnamic COmponent 
Testing (DYCOT) [2]. Sled test system consists of sled with grid 
holes and pusher sled, where all electronics and measurement 
equipment is mounted as also shown on Figure 1. The pusher 
sled is being pushed by CSA catapult, equipped with hydraulic 
piston that can accelerate the sled by up to 90G to total velocity 
of 100kph with payload of 1000kg. When fully loaded (payload 
of 5000kg), the piston is capable of accelerating the sled up to 
35G. Maximum force is equal to 2.5MN. Maximum acceleration 
gradient is 14G/ms. 

mailto:Jakub.jelinek@tuvsud.c
mailto:Jakub.jelinek@fs.cvut.cz
mailto:Milan.Ruzicka@fs.cvut.cz
mailto:alzbeta.kafkova@tuvsud.c
mailto:alzbeta.kafkova@fs.cvut.cz


New Advanced Methods in Side Crash Testing
JAKUB JELíNEK, MILAN RůžIČKA, ALžBěTA KAfKOVá MECCA   02 2020   PAGE 2

FIGURE 1: DYCOT system during the acceleration of the test sample
OBRÁZEK 1: Systém DYCOT při urychlení zkušebního vzorku

It is usually used for frontal crash test where the occupant safety 
is being tested. It can also be used for testing of crash‑landing 
of any small airplane that would fit in the lab. Latest addition to 
the service portfolio is battery pack testing for any battery packs 
up to 1000kg.

2.2 ALIS
The capabilities of DYCOT sled system have been significantly 
increased by adding ALIS into serie, right next to the sled 
platform see Figure 2. It uses up to 6 hydraulic cylinders in 
order to correctly simulate the door intrusion kinematics during 
the side crash. It enables one to use only small part of the car 

together with dummies and restraint systems and carry out 
simulation of the side crash with focus on restraint system and 
biomechanical loads. 
The system may seem as a "train of trolleys". The driven sled 
trolley is mounted to the main hydraulic system that generates 
the main acceleration pulse. ALIS is mounted on the separate 
trolley, attached to the sled. The whole structure is shown on 
Figure 3, where main components are identified. The lateral 
system consists of additional pneumatic system directly 
attached to several pneumatic cylinders, ALIS primary structure 
and control system, linear guiding system and "impact break‑in 
structure". 
The main reason for testing is to fine‑tune the restraint system 
in order to get the best biomechanical loading in cheaper and 
quicker way – on sled. The fact that sled tests with only several 
trim parts and seats are used instead of fully equipped crash 
vehicles makes this approach very effective. We are definitely 
talking about tens of percents.

Door structure deforms and biomechanical loads are reached
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FIGURE 3: DYCOT + ALIS concept
OBRÁZEK 3: Koncept DYCOT + ALIS

FIGURE 2: Active Lateral Intrusion Simulator (ALIS)
OBRÁZEK 2: Active Lateral Intrusion Simulator (ALIS)
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2.3 METHODOLOGY
The whole process starts with FE simulation of full vehicle crash 
and is shown in Appendix A. It is also very important to mention 
that usually testing consists of two sets of tests. The first one 
inputs are based on virtual model and results only and gets the 
initial recommendations for the first crash test. The second loop 
inputs are already based on this crash test and requires further 
development and tuning of ALIS.

2.4 DESIGN OF EXPERIMENT (DOE) [3]
The main objective is to develop a virtual method that would 
allow reducing full crash into sled crash via ALIS, defining 
complete ALIS setup and give highly accurate results, while 
reducing costs. 
The DoE method is advanced mathematical method that uses 
n‑dimensional mathematical surface for response values 
prediction based on combination of input parameters. The aim is 
to get ideally perfect match between full crash model as given at 
the beginning of the project and ALIS reduced model.
Amount of input parameters is very often high. One of the 
ways how to put up with them might be Design of Experiment 
(DoE) with response surface creation or "step‑by‑step" iteration 
with subsequent physical validation as shown in Figure 4. Such 
method would reduce number of runs and predicts multiple 
results based on input parameter combinations. Such pulses 
have to fulfill feasibility criteria of the cylinders and catapult.

2.4.1 PULSE TUNING PROCEDURE
There are several pulses that come into the whole simulation 
and subsequent physical test. In order to identify and tune 
pulses two main steps have been chosen. Firstly, contribution of 
every pulse needs to be determined and secondly chosen pulses 
have to be fine‑tuned in a special manner that will ensure both 
physical feasibility and biomechanical responses.

2.4.2 PULSE IDENTIFICATION
Currently there are three hydraulic cylinders available at the ALIS 
system. One is 120kN and other two are 60kN and therefore 
three pulses are available. Additional pulse comes from the 
catapult that represents overall pulses during the side crash. 
That makes it four pulses available for the first stage of DoE 
testing. Each pulse has got several parameters such as scale 
factor for both abscissa and ordinate and also offset values for 
both abscissa and ordinate. All four pulses have following set of 
parameters as shown in Figure 5.

FIGURE 5: List of design variables
OBRÁZEK 5: Seznam vstupních proměnných

 

FIGURE 4: DoE response surface (top), step‑by‑step process (bottom)
OBRÁZEK 4: DoE povrch (nahoře), postupný proces ALIS řešení (dole)
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Following variable abbreviations are used:
• ASD_SY – scale factor of sled
• ASD_OA – pulse offset of sled
• DBB_SF – scale factor of actuator at B‑pillar bottom
• DBB_OA – pulse offset of actuator at B‑pillar bottom 
• DBU_SF – scale factor of actuator at B‑pillar upper 
• DBB_OA – pulse offset of actuator at B‑pillar upper
• DDD_SF – scale factor of actuator at door structure
• DDD_OA – pulse offset of actuator at door structure

Since there are 8 variables, the resultant design space will be 8D. 
Since there is no simple way of illustrating the 8D interactions, 
we have to go down to 3D visualisation. When always 3 variables 
are selected and can be switched for any other variable. 
All 200 experiments (simulations) have to be run
It has to be pointed out that as there are 8 variables, then 
8‑dimensional surface will be created based on the responses 
and hence the complete surface is so complex that cannot be 
displayed. 

TABLE 1: List of responses
TABULKA 1: Seznam vyhodnocovaných odezev

ID Type Name Component Units

90079631

BAR

First thorax rib Compression mm

90079632 Second thorax rib Compression mm

90079633 Third thorax rib Compression mm

90079634 First abdomen rib Compression mm

90079635 Second abdomen rib Compression mm

90000002

NODE

Head acc Acceleration, velocity mm ms‑2 / mm ms‑1

90015619 T1 Lower neck acc Acceleration, velocity mm ms‑2 / mm ms‑1

90021212 T4 first thorax acc Acceleration, velocity mm ms‑2 / mm ms‑1

90023825 T12 second abdomen acc Acceleration, velocity mm ms‑2 / mm ms‑1

90029764 Pelvis acc Acceleration, velocity mm ms‑2 / mm ms‑1

FIGURE 6: Comparison of initial ALIS vs full crash results (ribs)
OBRÁZEK 6: Porovnání úvodních výsledků ALIS s fyzickou zkouškou (žebra)
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2.4.3 RESPONSES
For response surface determination it is necessary to get responses 
respective to our objectives. Responses are resultants of any 
measurements such as force, displacement, acceleration, angle, 
etc. Response list is given by the scope of the sensitivity study. 
In all crash simulations, the most important are biomechanical 
loads that describes the behaviour of a human body during the 

crash event. The requirements differ very much from case to 
case so it is always unique set of criteria that are ideally to be 
matched. In our pole strike, it is ribs compression. Nowadays, 
most of the dummies and solvers are able to calculate and/or 
evaluate these criteria directly via sensors/points of interests. In 
our case several node and bars have been selected. Nodes are 

FIGURE 7: The response trends based on initial variable combination (top) and response trends based on update variable combination (bottom)
OBRÁZEK 7: Trendy odezev v úvodním nastavení (nahoře) a trendy založené na upravených parametrech (dole)
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used for tuning of controlled trim deformation and its velocity. 
Simply the velocity and deformation of the trim ensures the 
same initial conditions as per full crash. Bar then are used 
for force (shoulder) and displacement (rib compression) 
evaluation. This metric is the most important for most of the 
safety crash engineers. 
Responses are used for response surface modelling and results 
evaluation. In our case there are several responses taken into 
account. They have been chosen according to the requirements 
of the customer and also EuroNCAP. Responses that have been 
used are shown in Table 1.

3. RESULTS OF THE VIRTUAL 
EXPERIMENTS
So far we have been preparing ourselves for the main task. 
To choose suitable variables from all available sources to 
achieve the intended responses. Now, when the response 
surface has been created and validated, the selection of 
variable that would fit the intended values follows.
The main reason of the virtual experiments is to perform 
sensitivity analyses that would later give a good knowledge 
of the system behaviour. This is particularly useful during the 
physical testing, when quick response to the current behaviour 
and recommendation of the next steps is highly expected and 

TABLE 2: Final variable values
TABULKA 2: Seznam finálních hodnot proměnných

Label Name Value Initial values

ASD_SY scale factor of sled 1.02 No

ASD_OA pulse offset of sled 0 Yes

DBB_SF scale factor of actuator at B‑pillar bottom 1.11 No

DBB_OA pulse offset of actuator at B‑pillar bottom 0 Yes

DBU_SF scale factor of actuator at B‑pillar upper 1.03 No

DBU_OA pulse offset of actuator at B‑pillar upper 0 Yes

DDD_SF scale factor of actuator at door structure 0.98 No

DDD_OA pulse offset of actuator at door structure 1 No

FIGURE 8: Comparison of initial and final ALIS pulses
OBRÁZEK 8: Porovnání úvodních a finálních pulsů ALIS
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there is no time for further simulations. In order to get ideal 
pulse configurations for respective biomechanical responses, it 
is necessary to set the target. EuroNCAP assessment is based 
on scoring system of the maximal biomechanical loads. 
For illustration there is a comparison of initial ALIS run, with all 
variables equal to 1, and full crash model shown on Figure 6.
The match is not ideal one at the moment and our goal is 
to get better match. Hence there has to be an update done 
of some or all available pulses (scale factor or offset). The 
suitable variable combinations can be found by user to 
achieve his requirements. LS‑OPT can easily predict response 
values based when one changes the input variables as 
indicated on Figure 7.
This is exactly the way how to better understand mutual 
interaction between input variables and responses. 
In our case, when the five ribs are of interest, we get desired 
response with following variables written in Table 2.
As these values are predicted, another testing run has to be 
to verify the suitability. Updated three pulses for ALIS and one 
for sled are shown on Figure 8.
Updated ALIS results of dummy biomechanical criteria 
compared to full crash data are displayed on Figure 9.
The comparison shows rather good match of both simulation 
approaches. Reduced model is and always will be only 
approximation and can only get close to the full crash 
simulation model. Four pulses with reasonable match, which 

is usually considered within deviation of 10%, to the full 
crash model have been found and hence the first objective is 
complete. Secondary objective was to get a good knowledge 
of the system behaviour and it has also been done. It will 
become very useful in upcoming testing. 

4. CONCLUSION
This paper has shown how to handle ALIS project within 
the virtual part. The main objective (pulses identification) 
has been achieved. Controlled pulses have become input 
parameters into the physical sled test. It is very important to 
get a good knowledge of the whole system behavior and how 
biomechanical responses are affected by variation of input as 
this helps the tuning procedure during early physical testing. 
Without it, one would not be able to recommend further 
steps to improve the results accuracy.
Future work is to cover the last remaining part and it is the 
physical testing and results validation.

LIST OF NOTATIONS AND ABBREVIATIONS
ALIS – Active Lateral Impact Simulator
ASD_SY – scale factor of sled
ASD_OA – abscissa offset 
DBB_SF – B‑pillar bottom scale factor 
DBB_OA – B‑pillar bottom abscissa offset

FIGURE 8: Comparison of initial and final ALIS pulses
OBRÁZEK 8: Porovnání úvodních a finálních pulsů ALIS
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DBU_SF – B‑pillar upper scale factor 
DBU_OA – B‑pillar upper abscissa offset 
DDD_SF – door scale factor
DDD_OA – door abscissa offset
DoE – design of experiment
DYCOT – Dynamic Component Testing
ENCAP – European New Car Assessment Programme
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APPENDIX A – METHODOLOGY
Output is to be biomechanical loads, intrusion and kinematics of important structural parts such as doors, A‑ and B‑pillars.
Size reduction of FE model comes next. The most important outcome of this phase is determination of the ALIS settings. This includes 
number of cylinders used, their timing and also design of the impact structure. Amount of input parameters is countless. Other two 
phases are related to the physical testing.

FIGURE 10: Real crash to ALIS reduction procedure [3] (Courtesy of Škoda Auto)
OBRÁZEK 10: Proces redukce z reálného crash testu po ALIS [3] (S laskavým dovolením Škoda Auto)

Full Car FE Simulation
Output:
Biomechanical Loads
lntrusion
Kinematics

Size‑Reduced FE Simulation
Output:
Number of cylinders
Cylinder positions
Force distribution (shape and magnitude)
Impact structure design

Reduced Physical Crash Test
Output:
Biomechanical Loads

Physical Crash Test
Output:
Biomechanical Loads

	Model Reduction

	ALIS Parameters Application

	Correlation
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1. INTRODUCTION
The issue of involute gearing geometry is a topic well‑covered 
by specialist literature. It is very important to connect the 
influence of the production technology. Modern technologies 
allow the fine‑tuning of the profile using CNC milling, electrical 
discharge machining (EDM) or grinding machines. In this article, 
the gearing profile is created purely by a trochoidal milling 
method with a cutting tool (rack). This rack profile also includes 
the tip chamfer and the protuberance. The gearing profile can be 
asymmetric.

2. NOMENCLATURE AND USAGE 
OF ASYMMETRIC GEARING
Initially, the side (flank) nomenclature should be defined. When 
driving a car, the power is transmitted at the "drive" flank; with 
engine (ICE) braking (going downhill without the gas pedal 
pressed), power is transmitted from the wheels to the engine 
via the "coast" flank of the teeth. In the case of a passenger 

car, load conditions at both tooth flanks can be very different. 
This important difference is caused by ICE turbocharging (torque 
increase). This means that one tooth flank is used much more 
often and with higher loading torque than the opposite one. 
This situation is depicted in Figure 1. The recorded torque during 
a real test drive of a passenger car is used as input data. These 
measured torque values are then sorted into "load levels". At 
each load level is then calculated an average torque and number 
of occurrences – the "load level spectrum". The effect of this 
whole loading spectrum on the gearset can then be transformed 
into loading with constant "equivalent" torque Me, which 
causes the same damage as the spectrum while undergoing the 
same number of cycles n. The exact procedure of its processing 
is described in [1].
Figure 1 depicts a typical situation for a passenger car where the 
tooth flank at the coast side is loaded only with the torque value 
of 49% and only for 35% of loading cycles in comparison with 
the drive flank. In the case of lorries, loading torque at the coast 

ONDŘEJ MILÁČEK 
CTU in Prague, Department of Automotive, Combustion Engine and Railway Engineering, Vehicle Center of Sustainable Mobility, 
ondrej.milacek@fs.cvut.cz

ABSTRACT
This article is a continuation of previously published articles. This paper briefly describes the positive and negative qualities of 
asymmetric gearing from the point of view of loading conditions applied at the gearset, and the development and latest update of the 
software for designing this special involute gearing. The precise profile of the manufacturing tool is also described. All display options, 
and the option of gear mesh animation using this program, is shown. All equations necessary for the gearing geometry description, 
and a special approach with respect to x‑shift coefficients distribution, are also mentioned in this paper.
KEYWORDS: ASYMMETRIC, INVOLUTE, GEARING, EXTERNAL, ANIMATION, TIP CHAMFER, PROTUBERANCE, RACK

SHRNUTÍ
Tento článek je pokračováním dříve publikovaných článků. Stručně popisuje pozitivní a negativní vlastnosti asymetrického ozubení 
z pohledu zátěžných stavů působících na ozubené soukolí, a vývoj a poslední změny nového softwaru určeného pro návrh tohoto 
speciálního evolventního ozubení. Detailní profil výrobního nástroje je rovněž zmíněn. Prezentovány jsou všechny možnosti zobrazení 
a možnosti nastavení animace záběru ozubení, které tento program umožňuje. Zmíněny jsou také veškeré rovnice, popisující geometrii 
ozubení a zvláštní přístup k rozdělení koeficientů jednotkového posunutí x.
KLÍČOVÁ SLOVA: ASYMETRICKÉ OZUBENÍ, INVOLUTA, OZUBENÍ, VNĚJŠÍ, ANIMACE, SRAŽENÍ HRANY NA HLAVĚ ZUBU, 
PROTUBERANCE, VÝROBNÍ HŘEBEN

SOFTWARE FOR THE DESIGN OF GEARING 
WITH AN ASYMMETRIC PROFILE
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side increases due to usage of an engine brake or retarder, so 
there are comparable loading conditions at both flanks. For this 
reason, a symmetric gearing profile makes sense is in this case.

FIGURE 1: Loading conditions of the passenger car at both tooth flanks 
while driving and braking by ICE.
OBRÁZEK 1: Zátěžné stavy v osobním vozidle na obou stranách zubu, 
pohon a brzdění motorem

From the point of view of gearing durability, a symmetric profile 
in the case of passenger cars is not ideal. One side is always 
either overloaded or has excessive durability, particularly from 
the perspective of Hertzian (contact) stresses, which affect 
pitting formation. To optimize the durability at both tooth sides 
according to loading conditions, it is useful to reduce the contact 
stress on the drive side. This reduction can be achieved using an 
asymmetric gearing profile. This means that the most important 
parameter of the rack profile – angle an (aP0) – is not same for 
both sides.

3. RELIABILITY COMPUTATION 
METHODOLOGY FOR ASYMMETRIC 
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This means that the contact stress can be reduced while 
maintaining the gearset’s major dimensions only by increasing 
the working transverse pressure angle atw. It is also clear that 
these osculation radii are much bigger at the drive side (blue) 
than at the coast side (green).

FIGURE 2: Osculation radii of involute gearset for single tooth contact in 
the mesh point.
OBRÁZEK 2: Oskulační poloměry (poloměry křivosti) evolventního ozubení 
při jednopárovém záběru ve valivém bodě.

Unlike for symmetric gearing, no standards yet exist for 
calculation of the lifetime of involute gearing with an asymmetric 
profile. For this reason, FEM simulation must be used firstly for 
symmetric gearing. These results must be compared with the 
stress obtained from a standardized calculation. Included in 
this calculation are all meshing and loading conditions using 
necessary coefficients (e.g. software KissSoft). By comparing 
both these results, recalculation coefficients are defined – see 
formula (3) for contact stress and formula (4) for root bending 
stress at each gearwheel.
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symmetric gearing results. To obtain the asymmetric gearing 
profile as an input for FEM analysis, the software described in 
the following chapter was developed.
The output from this program is also very important. The final 
gearset design from this program is further used for the creation 
of a 3D CAD model (e.g. to Catia using a function "Design Table") 
to create an input file (*.stp or *.igs) for an FEM solver. To be 
able to transfer the geometry further there is an option of saving 
all necessary parameters and coordinates of all calculated points 
into a "*.csv" file. An important advantage of this program is 
that the output is a chosen amount of calculated points, so the 
change of the design in 3D is then very fast – just the loading of 
a new (rewritten) design table in MS Excel. 
The following Figure 3 depicts an example of gearset FEM 
analysis. It’s a comparison of symmetric and asymmetric variants 
of a gearset. The decrease in the contact pressure by the same 
load (torque) for the asymmetric variant is approx. 9.3%. Values 
of maximum stress (von Mises [GPa]) are enlarged to be readable.
On the other hand, asymmetric profile (higher pressure angle) 
also has one negative consequence – the increase in radial 
forces, which cause higher loading on the bearings.

4. STANDARD APPROACH TO SYMMETRIC 
INVOLUTE GEARING DESIGN
When designing the macrogeometry of a symmetric gearset 
according to applicable standards (e.g. DIN 3990:1987, Method 
B in KissSoft), all input parameters must be determined. In the 
next step, the sum of required x‑shift coefficients x∑ for the 
gearset can be calculated using equation (5).

important advantage of this program is that the output is a chosen amount of calculated points, so the 
change of the design in 3D is then very fast – just the loading of a new (rewritten) design table in MS 
Excel.  
The following Figure 5 depicts an example of gearset FEM analysis. It’s a comparison of symmetric 
and asymmetric variants of a gearset. The decrease in the contact pressure by the same load (torque) for 
the asymmetric variant is approx. 9.3%. Values of maximum stress (von Mises [GPa]) are enlarged to 
be readable. 
 
On the other hand, asymmetric profile (higher pressure angle) also has one negative consequence - the 
increase in radial forces, which cause higher loading on the bearings. 
 

 
Figure 5: Example of FEM analysis of symmetric and asymmetric gearing, both profiles were designed using 

developed program. 
Obrázek 6: Příklad FEM analýzy symetrického a asymetrického ozubení, oba profily byly vytvořeny s pomocí 

popisovaného programu 
 
4. Standard approach to symmetric involute gearing design 
When designing the macrogeometry of a symmetric gearset according to applicable standards (e.g. DIN 
3990:1987, Method B in KissSoft), all input parameters must be determined. In the next step, the sum 
of required x-shift coefficients xS for the gearset can be calculated using equation (4). 
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z1,2  … number of teeth 
  an (aP0)  … normal (tool) pressure angle 
  at  … transverse pressure angle 
  atw  … working transverse pressure angle 
 
This value of xS is calculated with the condition of no backlash, and is then divided among each 
gearwheel according to loading or geometrical conditions and demands on the wheels. Finally, needed 
backlash is implemented to the final gear shape by the given standard (e.g. DIN 3967). An example of 
such gearing including the backlash can be seen in Figure 7. 
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where:  x1,2 x‑shift coefficients 
 z1,2 number of teeth
 an (aP0) normal (tool) pressure angle
 at transverse pressure angle
 atw working transverse pressure angle

This value of xS is calculated with the condition of no backlash, 
and is then divided among each gearwheel according to loading 
or geometrical conditions and demands on the wheels. Finally, 
needed backlash is implemented to the final gear shape by the 
given standard (e.g. DIN 3967). An example of such gearing 
including the backlash can be seen in Figure 4.

FIGURE 4: Example of the gearset appearance including the backlash 
designed in KissSoft
OBRÁZEK 4: Ukázka vzhledu ozubeného soukolí (včetně vůle), navrženého 
v programu KissSoft

5. ASYMMETRIC INVOLUTE GEARING 
GEOMETRY DESCRIPTION
In the case of a symmetric profile (rack), the tooth thickness 
is simply divided into two identical halves. In the case of 
asymmetric gearing, the situation is different. Figure 5 shows 

FIGURE 3: Example of FEM analysis of symmetric and asymmetric gearing, both profiles were designed using developed program.
OBRÁZEK 3: Příklad FEM analýzy symetrického a asymetrického ozubení, oba profily byly vytvořeny s pomocí popisovaného programu
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the situation in the transverse plane during manufacture, i.e. the 
mesh of the tool (rack) with a gearwheel. All values with the 
symbol "0" are related to a tool. The tool geometry description 
follows. A basic parameter is the thickness at tool reference 
plane st0, which equals half of the transverse pitch pt0, as in the 
case of a symmetric version.

 
Figure 7: Example of the gearset appearance including the backlash designed in KissSoft 

Obrázek 8: Ukázka vzhledu ozubeného soukolí (včetně vůle), navrženého v programu KissSoft 
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”0” are related to a tool. The tool geometry description follows. A basic parameter is the thickness at 
tool reference plane 𝑠𝑠(+, which equals half of the transverse pitch 𝑝𝑝(+, as in the case of a symmetric 
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Regarding the tooth profile, the rack shift must be considered. If the x-shift coefficient is equal to zero, 
the tooth thickness st at the reference diameter d is the same as the thickness of the tool (gap) 𝑠𝑠(+. If the 
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where:  mn … normal module 
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For symmetric gearing this value is A = 1. For asymmetric gearing 
there is standardly higher value of the profile angle at on the 
drive side. From this reason also the thickness on the drive side 
is higher than on the coast side and thus the asymmetry ratio is 
standardly A > 1.
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gearing without a backlash, the basic condition of correct mesh must be used, see formula (11). The 
meaning is that the sum of tooth thicknesses of mating gears at their working pitch diameters must 
remain the transverse pitch. 
 

𝑝𝑝(& = 𝑠𝑠(&$ + 𝑠𝑠(&# (11) 
 
These working pitch diameters can be calculated purely from the kinematic ratio using of number of 
teeth as (12) 

𝑟𝑟&$ =
𝑎𝑎&

1 + 𝑧𝑧#
𝑧𝑧$

						 , 											𝑟𝑟&# =
𝑎𝑎& ∙ 𝑧𝑧#𝑧𝑧$
1 + 𝑧𝑧#

𝑧𝑧$
						 (12) 

 
For a symmetric gearing, these thicknesses 𝑠𝑠(&	$,# can be computed using formula (13) as 
 

𝑠𝑠(&	$,# = 𝑑𝑑&	$,# K
𝑠𝑠(	$,#
𝑑𝑑$,#

+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&L 	,						𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼 = tan𝛼𝛼 − 𝛼𝛼	[𝑟𝑟𝑎𝑎𝑑𝑑]	 (13) 

 
where working transverse pressure angle atw can be calculated using formula  (14) as 
 

𝛼𝛼(& = 	arccos /
𝑎𝑎"
𝑎𝑎&

∙ cos 𝛼𝛼(2 (14) (15)

where:  an = r1+r2 nominal center distance 
 aw = rw1+rw2  working (real) center distance
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For an asymmetric profile, these thicknesses stw1,2 can also be computed, using formula (14), but separate for each tooth side. 
Radii must be used instead of diameters, see formulas (16) and (17).

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(16)

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(17)

By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 for both gearwheels, 
see formula (18)

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(18)

The aim is to determine needed sum of both x‑shift coefficients. From this reason these values x1,2 must be used for description of 
the thicknesses stw1,2, see equation (19).

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(19)

The sum of these two thicknesses follows, see formula (20).

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(20)

The value of (r1+r2) can be substituted using formula (21). Values of appropriate mesh angles at and atw can be taken either from 
drive or coast side because their ratio used in formula (21) remains same for both of them.

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(21)

Transverse pitch ptw at working pitch diameters dw1,2 can be computed using formula (22) as

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(22)

Now it is possible to put all needed formulas into the equation (12). The final result of this condition is the desired sum of x‑shift 
coefficients x1+x2 of both gearwheels, see formula (23).

where:  𝑎𝑎" = 𝑟𝑟$ + 𝑟𝑟#  … nominal center distance  
𝑎𝑎& = 𝑟𝑟&$ + 𝑟𝑟&# … working (real) center distance 

 
For an asymmetric profile, these thicknesses 𝑠𝑠(&	$,# can also be computed, using formula (13), but 
separate for each tooth side. Radii must be used instead of diameters, see formulas (15) and (16). 
 

𝑠𝑠(&	,-./0	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	,-./0	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0L (15) 

𝑠𝑠(&	1234(	$,# = 𝑟𝑟&	$,# K
𝑠𝑠(	1234(	$,#

𝑟𝑟$,#
+ 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L (16) 

 
By the summing of these two parts, total tooth thickness can be defined on working pitch diameters dw1,2 

for both gearwheels, see formula (17) 
 

𝑠𝑠(&	$,# = 𝑠𝑠(&	,-./0	$,# + 𝑠𝑠(&	1234(	$,# (17) 
 
The aim is to determine needed sum of both x-shift coefficients. From this reason these values 𝑥𝑥$,# must 
be used for description of the thicknesses 𝑠𝑠(&	$,# , see equation (18). 
 

𝑠𝑠(&	$,# = 𝑟𝑟&	$,# K
𝑚𝑚( ∙ 𝜋𝜋
2 ∙ 𝑟𝑟$,#

+
𝑚𝑚( ∙ 𝑥𝑥$,#

𝑟𝑟$,#
∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234() + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	,-./0

− 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖	𝛼𝛼(&	1234(L 
(18) 

 
The sum of these two thicknesses follows, see formula (19). 
 

𝑠𝑠(&	$ + 𝑠𝑠(&	# = 
 

𝑚𝑚( ∙ 𝜋𝜋
2

∙ /
𝑟𝑟&$
𝑟𝑟$

+
𝑟𝑟&#
𝑟𝑟#

2 + (𝑥𝑥$ + 𝑥𝑥#) ∙ 𝑚𝑚( ∙
𝑟𝑟&$
𝑟𝑟$

∙ (tan(𝛼𝛼"	,-./0) + tan(𝛼𝛼"	1234()) + (𝑟𝑟&$ + 𝑟𝑟&#) 

 
∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234() 

(19) 

 
 
The value of (𝑟𝑟&$ + 𝑟𝑟&#) can be substituted using formula (20). Values of appropriate mesh angles 𝛼𝛼( 
and 𝛼𝛼(& can be taken either from drive or coast side because their ratio used in formula (20) remains 
same for both of them. 
 

𝑟𝑟&$ + 𝑟𝑟&# = 𝑎𝑎& = 𝑎𝑎" ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

=
(𝑧𝑧$ + 𝑧𝑧#) ∙ 𝑚𝑚(

2
∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

 (20) 

 
Transverse pitch 𝑝𝑝(& at working pitch diameters 𝑑𝑑&	$,# can be computed using formula (21) as 
 

𝑝𝑝(& = 𝑝𝑝( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
𝑑𝑑&
𝑑𝑑

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	,-./0
cos 𝛼𝛼(&	,-./0

= 𝜋𝜋 ∙ 𝑚𝑚( ∙
cos 𝛼𝛼(	1234(
cos 𝛼𝛼(&	1234(

 (21) 

 
Now it is possible to put all needed formulas into the equation (11). The final result of this condition is 
the desired sum of x-shift coefficients 𝑥𝑥$ + 𝑥𝑥# of both gearwheels, see formula (22). 
 

𝑥𝑥7 = 𝑥𝑥$ + 𝑥𝑥# =
(𝑧𝑧$ + 𝑧𝑧#) ∙ (𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	,-./0 − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	,-./0 + 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(&	1234( − 𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼(	1234()

2 ∙ (tan 𝛼𝛼"	,-./0 + tan𝛼𝛼"	1234()
 (22) 

 

(23)
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As it was already mentioned, value of xΣ resulting from the 
equation (23) is derived for the condition of theoretical mesh 
with no backlash between tooth flanks. Similarity with the 
equation (5) is obvious at the first glance. The only difference 
lays in the fact, that appropriate expressions are used 
separately for each tooth side, instead of one value identical 
on both sides as for symmetric profile. One of these two 
values x1,2 must be set and the second one is then calculated 
from xΣ.

6. DEPICTION OF THE GEARSET 
INCLUDING THE BACKLASH
For assuring of correct gearset function some minimal 
backlash is needed between tooth flanks while meshing. To be 
able to determine and depict this circumferential transverse 
backlash jt we must focus again on working pitch diameters 
dw1,2 where thicknesses of mating gears are important. On 
these diameters transverse working pitch ptw remains same 
as for the case of meshing without a backlash and can be 
defined using formula (22). Teeth thicknesses of both gears 
can be computed using formula (19). Fundamental condition 
for meshing without a backlash expressed by the equation 
(12) then changes to the equation (24), where circumferential 
backlash jt is already considered.

As it was already mentioned, value of 𝑥𝑥7 resulting from the equation (22) is derived for the condition 
of theoretical mesh with no backlash between tooth flanks. Similarity with the equation (4)  is obvious 
at the first glance. The only difference lays in the fact, that appropriate expressions are used separately 
for each tooth side, instead of one value identical on both sides as for symmetric profile. One of these 
two values  𝑥𝑥$,# must be set and the second one is then calculated from  𝑥𝑥7. 
 
6. Depiction of the gearset including the backlash 
For assuring of correct gearset function some minimal backlash is needed between tooth flanks while 
meshing. To be able to determine and depict this circumferential transverse backlash jt we must focus 
again on working pitch diameters 𝑑𝑑&	$,# where thicknesses of mating gears are important. On these 
diameters transverse working pitch 𝑝𝑝(& remains same as for the case of meshing without a backlash and 
can be defined using formula (21). Teeth thicknesses of both gears can be computed using formula (18). 
Fundamental condition for meshing without a backlash expressed by the equation (11) then changes to 
the equation (23), where circumferential backlash 𝑗𝑗( is already considered. 
 

𝑝𝑝(& = 𝑠𝑠(&$ + 𝑠𝑠(&# + 𝑗𝑗( (23) 
 
Formula (23) can then be used to express the circumferential transverse backlash 𝑗𝑗( as 
 

𝑗𝑗( = 𝑝𝑝(& − 𝑠𝑠(&$ − 𝑠𝑠(&# (24) 
 
From this formula (24) it is clear, that the sum of both tooth thicknesses 𝑠𝑠(&	$,# must be smaller than for 
the case without clearance. These thicknesses are influenced by the values of x-shift coefficients. This 
means that for case including the backlash the equation (22) cannot be used. When considering a real 
case including the backlash, both values of 𝑥𝑥$,# must be entered and resulting transverse backlash jt can 
be then calculated. 
More important than circumferential transverse backlash 𝑗𝑗( is the normal one 𝑗𝑗". In the case of 
asymmetric gearing, the same formula is used as for a symmetric profile, but relevant angles differ at 
both sides, see formula (25). 
 

𝑗𝑗"	,-./0 = 𝑗𝑗( ∙ cos 𝛼𝛼(&	,-./0 ∙ cos 𝛽𝛽&    ,    𝑗𝑗"	1234( = 𝑗𝑗( ∙ cos 𝛼𝛼(&	1234( ∙ cos 𝛽𝛽& (25) 
 
The situation while recalculating backlashes is depicted in detail in Figure 11. This figure applies only 
for spur gearing, in the case of helical gearing the influence of helix angle 𝛽𝛽& cannot be depicted in 
transverse plane. Nevertheless, in equations (25) it is included, so computed values of 𝑗𝑗" shown in the 
program are correct. 

  
Figure 11: Recalculation from circumferential transverse backlash to normal backlash - detail 

Obrázek 12: Přepočet obvodové vůle v tečné rovině do roviny normálové 

(24)

Formula (24) can then be used to express the circumferential 
transverse backlash jt as

As it was already mentioned, value of 𝑥𝑥7 resulting from the equation (22) is derived for the condition 
of theoretical mesh with no backlash between tooth flanks. Similarity with the equation (4)  is obvious 
at the first glance. The only difference lays in the fact, that appropriate expressions are used separately 
for each tooth side, instead of one value identical on both sides as for symmetric profile. One of these 
two values  𝑥𝑥$,# must be set and the second one is then calculated from  𝑥𝑥7. 
 
6. Depiction of the gearset including the backlash 
For assuring of correct gearset function some minimal backlash is needed between tooth flanks while 
meshing. To be able to determine and depict this circumferential transverse backlash jt we must focus 
again on working pitch diameters 𝑑𝑑&	$,# where thicknesses of mating gears are important. On these 
diameters transverse working pitch 𝑝𝑝(& remains same as for the case of meshing without a backlash and 
can be defined using formula (21). Teeth thicknesses of both gears can be computed using formula (18). 
Fundamental condition for meshing without a backlash expressed by the equation (11) then changes to 
the equation (23), where circumferential backlash 𝑗𝑗( is already considered. 
 

𝑝𝑝(& = 𝑠𝑠(&$ + 𝑠𝑠(&# + 𝑗𝑗( (23) 
 
Formula (23) can then be used to express the circumferential transverse backlash 𝑗𝑗( as 
 

𝑗𝑗( = 𝑝𝑝(& − 𝑠𝑠(&$ − 𝑠𝑠(&# (24) 
 
From this formula (24) it is clear, that the sum of both tooth thicknesses 𝑠𝑠(&	$,# must be smaller than for 
the case without clearance. These thicknesses are influenced by the values of x-shift coefficients. This 
means that for case including the backlash the equation (22) cannot be used. When considering a real 
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The situation while recalculating backlashes is depicted in detail 
in Figure 6. This figure applies only for spur gearing, in the case 
of helical gearing the influence of helix angle βw cannot be 
depicted in transverse plane. Nevertheless, in equations (26) it 
is included, so computed values of jn shown in the program are 
correct.
While meshing of drive flanks, the backlash between coast 
flanks appears and conversely, see Figure 7. Normally the drive 
side is the more important one and has a higher value of mesh 
angle than the coast one. For this reason, backlash at the coast 
side is standardly also higher, see Figure 6. 

7. APPROACH OF THIS PROGRAM, 
ITS APPEARANCE AND FUCTIONS
This software was developed in the Python programming 
software. Units of all used and displayed values are [mm]. The 
KissSoft program served as an example of its appearance. One 
of the first versions is depicted in Figure 9. A very important 
difference in comparison with KissSoft lies in the approach to 
backlash in the gearset. 
When designing a gearset, input parameters must be given. This is 
normally the ratio (number of teeth), working center distance and 
maximum addendum diameters restricted by space requirements. 

FIGURE 6: Recalculation from circumferential transverse backlash to 
normal backlash ‑ detail
OBRÁZEK 6: Přepočet obvodové vůle v tečné rovině do roviny normálové

FIGURE 7: Normal backlash jn between coast/drive flanks while drive/
coast flanks meshing (left/right).
OBRÁZEK 7: Normálová vůle jn mezi coast/drive čely během drive/coast 
záběru (vlevo/vpravo).
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Subsequently, tooth profile (mesh angle) and helix angle are 
determined. The result of the gearset macrogeometry design is the 
sum of profile shift xΣ for the condition of no backlash.

Real tooth profiles (values of x‑ shift coefficients) are subsequently 
changed according to related standards (e.g. DIN 3967) to reach 
desired backlash, which is crucial for correct gearset function.
In the case of the program described in this contribution, xΣ can 
be either calculated directly using formula (23) for the condition 
of no backlash or can be entered manually, separately for each 
gear including the x‑shift coefficients. An exception to this are 
common parameters of both gears (e.g. helix angle). Gearwheel 
profiles are directly depicted including the backlash (if possible) 
and all needed parameters are calculated. Example of such 
situation is depicted in Figure 7. Indeed, the situation when 
negative backlash appears can occur, see Figure 8. Of course, in 
reality negative backlash is nonsense, its value must be always 
positive. From this reason it is very important to check backlash 
values. Their values are enlarged in Figure 8.
Development of this software was quite demanding. In the 
following text its appearance and parameters at given stages 
are depicted and described.
The first version is depicted in Figure 9. At this stage it was 
possible to set only the basic parameters of the rack. These 
input parameters are mentioned in the following Table 1. 
Furthermore, for the manufacturing of both gears only one 
(identical) cutting tool was considered. This issue can cause the 
tip – root interference. Besides all necessary parameters, there is 

FIGURE 8: Example of the gearset with negative backlash value ‑ nonsense
OBRÁZEK 8: Příklad ozubeného soukolí se zápornou hodnotou vůle ‑ nesmysl

 
FIGURE 9: Appearance of the program initial version for depicting 
symmetric and asymmetric gearing – example of a gear mesh
OBRÁZEK 9: Vzhled počáteční verze programu, zobrazující symetrické 
i asymetrické ozubení ‑ příklad zubů v záběru soukolí
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also the option of some checkboxes ‑ for choosing of symmetric/
asymmetric profile, maximum addendum rack radii at both flanks 
and "auto module" checkbox. This enables selection of whether 
the value of the normal module is calculated from other given 
values with no clearance (particularly the working axes distance 
aw), or can be strictly determined. The second variant enables 
creation of the clearance between flanks. This function is very 
useful for preliminary design of the gearset. In the next steps, fine 
tuning of the profile can round this value to a more suitable one.
In the upper‑left corner it is possible to select "Display Options". 
Figure 13 gives an example of "Manufacturing gear 1". Figure 
16 depicts the option "Meshing".
In addition to the gearing meshing, it is also very useful to see 
the situation while manufacturing. For this reason, there are 
more options for depiction – e.g. while manufacturing of both 
gears ‑ meshing of the gear with the tool (rack) – depicted in 
Figure 10. The displayed variant can be chosen by clicking the 
button "Display Options" in the upper‑left corner.

FIGURE 10: Asymmetric gear design – option "Manufacturing gear 1".
OBRÁZEK 10: Vzhled asymetrického ozubení – možnost "Výroba kola 1".

FIGURE 11: Complete appearance of manufacturing tool (rack) with asymmetric profile, tip chamfer and protuberance created by this software.
OBRÁZEK 11: Kompletní vzhled výrobního nástroje (hřeben) s asymetrickým profilem, včetně sražení na hlavě 
a protuberance, vytvořeno popisovaným softwarem



Software for the Design of Gearing with an Asymmetric Profile
ONdřEJ MILáČEK MECCA   02 2020   PAGE 17

In the version depicted in Figure 10, an improvement in the tool 
geometry is visible in comparison with the previous version 
in Figure 9. It is already possible to set a tip chamfering and 
a protuberance. If these options are not needed, values of 

appropriate profile angles (αKP0, αprP0) are set to same value as 
αn. The detailed appearance of a possible tool with tip chamfer 
and protuberance is depicted in Figure 11. Nevertheless, there is 
still only one common tool for manufacturing both gearwheels. 
This limitation led to an issue concerning non‑equal tip – root 
clearance. To eliminate this issue another innovation was added 
to the final version. Each gearwheel has its own manufacturing 
tool. The only common parameters of these two tools are angles 
αP0 at both sides to assure correct mesh. All other parameters can 
be different e.g. addendum and dedendum heights. Furthermore, 
the option of tip chamfering and protuberance was maintained. 
In total, four separate profiles of tooth flanks are defined. All 
these parameters can be set in a separate pop‑up window 
after clicking the button "Modify" depicted in Figure 13. Its 
appearance is depicted in Figure 12.
In Figure 13 can be seen that the checkbox "no backlash" is 
checked. For this reason the value of xΣ was calculated and 
depicted in the tab „Gear set info" and furthermore, it is possible 
to set only the value of x1 and the value of x2 is computed 
automatically without a possibility to be changed.
All angles mentioned in this window (Figure 12) are parameters 
of the tool, so they are defined in the normal plane (e.g. rack 
profile angles αP0). From all these parameters results the final 
tool geometry. Important tool parameters are depicted in the 
lower part, i.e. the protuberance magnitude (prP0) and tool 

TABLE 1: Table of input parameters of the depicted gearset in Figure 9 – 
for initial program version.
TABULKA 1: Tabulka vstupních parametrů soukolí, zobrazeného 
na Obrázku 9 – pro počáteční verzi programu.

parameter sign unit

Number of teeth z1, z2 ‑

Normal module mn mm

Rack profile angle ‑ drive αnD deg

Rack profile angle ‑ coast αnC deg

Helix angle β deg

Facewidth b1, b2 mm

x – shift coefficient x1, x2 ‑

Outer (tip) diameter da1, da2 mm

Axes distance aw mm

Addendum height of the rack (tool) haP0 mm

Addendum radius of the rack (tool) ‑ drive ρaP0_D mm

Addendum radius of the rack (tool) ‑ coast ρaP0_C mm

Number of teeth to measure over i ‑

Ball diameter to measure over D mm

 
FIGURE 12: Appearance of the window for setting of a tool (rack) parameters with asymmetric profile. This window pops‑up after clicking the button "Modify".
OBRÁZEK 12: Vzhled okna s nastavením parametrů nástroje (hřeben) pro asymetrický profil. Toto okno se objeví po stisknutí tlačítka "Modify"
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thickness (sP0) at the appropriate side (flank). Furthermore, 
total tool thickness (sP0) is displayed above too. The correctness 
of displayed values can be checked, because for the value of 
normal module mn = 2 mm, the value of total tool thickness sP0 
is precisely π mm. At the gear 1 protuberance was used, at the 
gear 2 there is no protuberance, so the value of prP0 is zero at 
both flanks (see Figure 12).
Regarding geometry calculations, in principle the same equations 
are used as for symmetric gearing. For the symmetric case it is 
quite simple because all computed values are divided by "2" 

because of the symmetry. In the case of asymmetrical gearing, 
all these computations are leading to a system of non‑linear 
equations which must be solved numerically by an appropriate 
solver. All used equations for completing the geometry 
calculations were found in [1], [2], [3] and [4]. 
These days it is possible to use it only for external, spur and helical, 
symmetric and asymmetric design. All necessary parameters of 
the gearset can be set on the left side. In the left bottom corner 
are three tabs: Design, Measurement and Unknown gear, see 
Figure 16. In the tab "Design", basic input parameters of the 
gearset can be entered.
Using this program it is also possible to calculate the value of the 
measurement over teeth (span measurement) and over balls. This 
can be seen in the tab "Measurement" in the bottom‑left corner. 
In the case of symmetric teeth both these variants are possible. 
In the case of asymmetric gearing, only the measurement over 
balls is possible because there is no common tangent between 
opposite involute flanks. Graphical depiction of the situation 
with embedded ball with the diameter "D" is depicted in Figure 
14 and is meaningful only for spur gearing when the depicted 
ball really touches both flanks. For helical gearing, the calculated 
value of the ball centers diameter dg is correct, but because of 
the helix angle, the inserted ball does not touch the depicted 
transverse gear profile. 
For asymmetric profile, this ball center diameter dg can be 
computed from the system of two equations (27) and (28).

FIGURE 14: Appearance of the program tab "Measurement" for spur gearing with an symmetric (left) and asymmetric (right) profile. Embedded ball 
touches the transverse tooth profile.
OBRÁZEK 14: Vzhled záložky "Měření" pro přímé zubení se symetrickým (vlevo) a asymetrickým (vpravo) profilem. Měřicí kulička se dotýká 
tečného profilu zubu

 
FIGURE 13: Appearance of the program including tip chamfer and 
protuberance – display option "Manufacturing gear 1".
OBRÁZEK 13: Vzhled programu včetně sražení na hlavně a protuberance ‑ 
zobrazeno nastavení "Výroba kola 1"
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Figure 27: Appearance of the program tab „Measurement“ for spur gearing with an symmetric (left) and 

asymmetric (right) profile. Embedded ball touches the transverse tooth profile. 
Obrázek 28: Vzhled záložky “Měření” pro přímé zubení se symetrickým (vlevo) a asymetrickým (vpravo) 

profilem. Měřicí kulička se dotýká tečného profilu zubu 
 

For asymmetric profile, this ball center diameter 𝑑𝑑; can be computed from the system of two equations 
(26) and (27). 
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The angular position of embedded ball related to the tooth axis is for symmetric profile given 
quite easily as half of the angle related to the one tooth pitch, see formula (29). 
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In case of asymmetric profile, this angle  𝜀𝜀=3>> can be derived from the Figure 29. If the diameter 
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The radius of the touching point can be computed thanks to contact angle 𝛼𝛼(A, as 
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and for the gearwheels with odd number of teeth same 
recalculation formula as for standard symmetric profile holds 
true, see equation (37).
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The tab "Unknown Gear" enables identification of unknown 
gear parameters using measured normal thickness at a given 
depth. The measured unknown gear profile can then be visually 
compared with the gear profile designed in the tab "Design". 
If both these depicted profiles match, then parameters of the 
unknown gear are set. This method can only be used for spur 
symmetric gearing and is very inaccurate.
For gearset optimizing from the perspective of qualitative 
properties, all necessary values are computed and depicted in 
the part "Gear set info" e.g. normal and tangential backlash 
(jn ‑ drive/coast), transverse contact ratio (εα ‑ drive/coast), axial 
contact ratio (εβ ‑ drive/coast), total contact ratio (εχ ‑ drive/
coast), minimum tip thickness without chamfering (sna) and 
minimum tip ‑ root clearance (ca* [ ‑ ]), see Figure 16.
Coordinates of tooth flank points, which are calculated 
analytically, don’t have the same distance between each other. To 

FIGURE 15: Geometry of the measurement over balls for the asymmetric profile
OBRÁZEK 15: Geometrie měření přes kuličky, asymetrický profil 
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assure correct depicting, these calculated points are interpolated 
using spline curves, whose intersections are subsequently 
computed. This approach is applied for both intersections, i.e. 
for tip chamfer involute (αKP0) and active involute (αP0), and 
for active involute (αP0) and tooth root fillet curve. Then these 
splines are defined by a given number of equidistant points. 
In some special cases there can occur a situation where active 
involute (αP0) is shortened (cut) by an involute created by linear 
part of tool protuberance (αprP0). Firstly, to find this intersection 
is numerically very problematic (unstable) and secondly, the 
magnitude of this phenomenon is very small. For these reasons, 
this whole part of the tooth flank is neglected in this software. 
These equidistant points of the tooth profile are depicted for 
gear 1 in Figure 16. 
The final interesting property of this program can be found in 
a very useful function – "kinematics". It is possible to change the 
angular position of the gearset, so the whole "passing through 
the mesh" of a gear pair or the gearwheel – rack meshing, can be 
observed. It can be done with arrows in the bottom‑right corner, 
see Figure 16. To be able to set a precise gear mesh position, 
it is possible to set the magnitude of rotational step (bottom‑
left corner of Figure 13) and absolute angular position of the 
gearset (bottom‑right corner of the Figure 16). This function is 
very illustrative for students during lessons. Furthermore, tip root 
interference can be visually detected while rotating the gearset.
Finally, it must also be mentioned that no commonly used 
deviations of all important dimensions (e.g. backlash magnitude 
jn or working center distance aw) are included in the finally 
designed profile. Both these gear profiles are purely theoretical.
To be able to determine desired values (e.g. normal backlash jn) 
including their tolerances, all input values must be set to their 
both tolerance extremes (maximum and minimum value in the 
appropriate tolerance range).

8. CONCLUSION
This contribution briefly described external involute gearing with 
asymmetric profile, its advantages, disadvantages and, above all, 
the program for its design – its previous and final appearance 
and functions. The formula for the sum of profile x‑shift 
coefficient for the case of no backlash was derived. Furthermore, 
there was described a special property of this program regarding 
to displaying the gearset with a backlash due to the possibility 
of setting arbitrary values of the x‑shift profile coefficients. All 
necessary basic equations were mentioned.
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ABSTRACT
Hybrid electric vehicle (HEV) powertrains with parallel topologies are among the frequently used layouts, because of their easy 
applicability on an existing conventional powertrain, by the addition of hybrid modules with mild, full, or a plug‑in capability. 
This paper investigates three of such parallel HEV topologies: P2, P3, and P4; all in a plug‑in variant, to find‑out which one 
performs best. Apart from the topology consideration, one of the other common questions or challenges in HEV development 
is the ICE concept selection. To address it, the paper combines the three HEV topologies with three technologically different 
internal combustion engines, all with the same power outputs. Then, all the powertrain and ICE combinations are tested in 
homologation driving cycles and vehicle dynamics simulation test – different acceleration tests – giving a holistic methodology 
suitable for thorough HEV topology evaluation, identifying all possible hybridization benefits. To find the maximum CO2 potential, 
it is convenient to exclude the effect of the energy management control strategy on the CO2 result in a charge sustaining driving 
cycle; therefore, to use some optimal control method. For this task, the paper compares the Equivalent Consumption Minimization 
Strategy, that realizes a Pontryagin’s minimum principle against the Dynamic Programming optimal control method, which is 
based on Bellman’s principle of optimality. Both control methods are available as a part of GT‑Suite 0D/1D/3D multi‑physics CAE 
simulation software, that is used in our whole study.
KEYWORDS: HYBRID ELECTRIC VEHICLE, OPTIMAL CONTROL METHOD, ENERGY MANAGEMENT STRATEGY, DYNAMIC 
PROGRAMMING, ECMS, PONTRYAGIN’S MINIMUM PRINCIPLE, PARALLEL HYBRID POWERTRAIN TOPOLOGY, PLUG-IN 
HYBRID, VEHICLE DYNAMICS SIMULATION, GT-SUITE

SHRNUTÍ
Hybridní elektrická vozidla (HEV) v paralelních topologiích patří mezi běžná uspořádání zejména díky snadné aplikovatelnosti 
ve stávajících pohonných řetězcích přidáním hybridních modulů, a to v různých úrovních hybridizace od mild, full až po plug‑in HEV. 
Tento článek se věnuje třem paralelním topologiím: P2, P3 a P4 v plug‑in variantě s cílem jejich celkového porovnání. Kromě výběru 
topologie hybridního vozidla je také častou otázkou výběr konceptu spalovacího motoru vhodného pro použití v hybridním vozidle. 
Abychom se na tuto otázku pokusili odpovědět, porovnáváme v této práci tři topologie hybridních pohonů se třemi technicky 
různými spalovacími motory o stejném maximálním výkonu. Všechny varianty jsou simulovány v homologačních jízdních cyklech 
a dalších dynamických testech, které by měly poskytnout ucelenou metodologii pro kompletní porovnání hybridních topologií 
a identifikovat možné přínosy hybridizace. Při hledání maximální úspory CO2 je vhodné omezit vliv řídící strategie na výsledné 
hodnoty CO2 v „charge sustaining" módu použitím některé z optimálních metod řízení. Proto tato práce porovnává ECMS strategii, 
která je založena na Pontryaginově minimálním principu a metodu dynamického programování založené na Bellmanově principu 
optimality. Obě metody jsou dostupné jako součást 0D/1D/3D multi‑fyzikálního simulačního softwaru GT‑Suite, který je v celé 
studii využíván. 
KLÍČOVÁ SLOVA: HYBRIDNÍ ELEKTRICKÉ VOZIDLO, OPTIMÁLNÍ STRATEGIE ŘÍZENÍ, ŘÍZENÍ ENERGETICKÝCH TOKŮ VE VOZIDLE, 
DYNAMICKÉ PROGRAMOVÁNÍ, ECMS, PONTRYAGINŮV MINIMÁLNÍ PRINCIP, TOPOLOGIE PARALELNÍHO HYBRIDNÍHO 
HNACÍHO ÚSTROJÍ, PLUG-IN HYBRID, SIMULACE DYNAMIKY VOZIDLA, GT-SUITE

EVALUATION OF PLUG-IN PARALLEL HEV TOPOLOGIES 
USING OPTIMAL CONTROL METHODS AND VEHICLE 
DYNAMICS SIMULATION
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1. INTRODUCTION
The current mandatory fleet‑wide average emission target in 
EU – set to 95 grams of CO2/km starting with 2020 "phase‑
‑in" period and following full application from 2021 [1] – 
pushes the automotive industry into the realm of powertrain 
electrification. A fleet‑wide electrification, either by pure 
electric vehicles (EV), or by hybrid electric vehicles (HEV), 
brings the obvious economic implications, especially the higher 
development and production costs.
The US and EU OEMs try to address these economic implications 
mainly by adopting the plug‑in HEV powertrains (PHEV), 
combined with parallel topologies. The popularity of plug‑ins 
from the side of OEMs is caused by two factors: first is, that the 
low average emission targets indirectly push for them; the second 
then, that a plug‑in size battery allows for higher electrical power 
output and "fun‑to‑drive" factor of these vehicles. The parallel 
HEV topologies then give a great variety of options – usually in 
a form of hybrid modules applied on a conventional powertrain 
(ICEV) – allowing for relatively small changes in already existing 
powertrains, and help this way to manage development costs 
(especially compared to a pure EV powertrain, or more "HEV‑
tailored" solutions) and reduce complexity at the OEM.
However, there are many technical challenges that need to 
be addressed in the early development stages of any new 
HEV powertrain. These revolve mainly around the overall CO2 
emission reduction potential, of the chosen parallel topology, 
different internal combustion engine (ICE) technology, or battery 
size, but also – when talking about the PHEV solutions – the 
performance gains in dynamic tasks.
The one variable affecting the CO2 performance of a studied 
HEV powertrain and its components is the energy management 
control strategy. It is therefore ideal to exclude its effects on 
the overall CO2 results, and ensure a globally optimal solution, 
when performing this type of study. GT‑Suite multi‑physics CAE 
simulation software already contains two built‑in optimal control 
strategies: Dynamic Programming algorithm (DP), and Equivalent 
Consumption Minimization Strategy (ECMS). DP algorithm 
solves the highly nonlinear HEV system’s behavior, in a globally 
optimal manner. It is a numerical control method of solving 
a multi‑stage decision‑making optimal control problem ([2] or 
[3]), based on the Bellman’s principle of optimality, requiring 
a priori information about the entire optimization horizon (in 
our case the entire driving cycle). Although it is not applicable 
for real‑time control for its high computation demand, it can 
serve as a very good benchmarking tool, exactly according to 
the needs of our paper. A more computationally efficient option 
for the energy management strategy is the ECMS algorithm, that 
realizes the Pontryagin’s minimum principle (PMP). Although the 
ECMS is also an "optimal control method", it is not intrinsically 

optimal as such [4], meaning it is only optimal locally in each 
time step, not globally during the whole driving cycle. Keeping 
the terminology from [4], we could further distinguish between 
the ECMS and PMP methods: nowadays, the term ECMS is more 
often used for the online causal method, whereas the PMP term 
is reserved for the offline non‑causal application.
Some implementations of DP were used to study the optimal 
hybridization level in two parallel HEV topologies in [2], to 
instruct rule‑based energy management strategies in [5, 6], to 
optimize the transmission’s shifting strategy in [7], or to study 
the optimal strategy for a series‑parallel Toyota Prius powertrain 
in [8]. Then, Zeng et al. presented an ECMS implementation 
as a casual suboptimal method performed online, by using 
several simplifying assumptions for the equivalence factor 
based on past and present driving in [9], or Nüesch et al. in [10] 
extended the Hamiltonian function with a pollutant emissions 
minimization. There are also some comparative studies of DP vs. 
PMP performance, one from Yuan et al. [11]. Finally, Zeman et 
al. [12] present a broad HEV topologies’ CO2 comparative study 
combined with modular simulation models within the GT‑Suite 
simulation platform, using only heuristic control methods.
Our paper is divided into four main chapters, following this 
introductory chapter 1. Chapter 2 shows the vehicle data and 
parameters, together with more details on HEV topologies, and 
internal combustion engines (ICE). Chapter 3 then presents our 
benchmarking simulation methodology, different simulation 
models, and homologation calculations. Chapter 4 is dedicated 
to the results; and finally, chapter 5 presents some overall 
conclusions.

1.1 GOALS OF THE PAPER
The main objective of our study is to showcase and apply a full 
development and benchmarking methodology for HEV vehicle 
powertrains.
This main objective then specifies in two following goals:

• First, to present a sensitivity on a parallel HEV topology 
type, comparing P2, P3, and P4 variants;

• Second, to test for a synergy effect between the ICE 
downsizing and powertrain hybridization, comparing 
three ICE technologies with three different downsizing 
levels.

The presented methodology consists of vehicle CO2 homologation 
results (using WLTP methodology), together with some dynamic 
tasks. These can be easily expanded with other user dynamic 
tasks, or driving cycles, together with future RDE cycles, or any 
other real‑life user scenarios – if requested. All our simulation 
tests are carried‑out on a C‑class vehicle, with the same plug‑in 
size battery, and hence pure electric drive capability (EV mode).
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The additional goals of our paper are:
• To compare the two optimal control methods 

implemented in GT‑Suite;
• To study the ECMS CO2 sensitivity on different heuristic 

criteria with our HEV powertrains;
• To study the HEV powertrains’ performances in some 

dynamic tasks (different acceleration tests, and 
maximum vehicle speed).

2. VEHICLE DATA AND PARAMETERS
TABLE 1: Main vehicle parameters
TABULKA 1: Hlavní parametry vozidla

Base vehicle mass 1240 [kg]

Frontal area 2.20 [m2]

Drag coefficient 0.31 [‑]

Tire rolling resistance factor 0.009 [‑]

Tire rolling radius 307 [mm]

We have chosen a C‑class vehicle with front‑wheel drive 
(FWD) as a baseline for all the simulations in our study. Table 
1 summarizes its main vehicle parameters (base vehicle mass 
is without ICE). This baseline vehicle is compared to the three 
parallel HEV topologies (figure 1). The first two of the investigated 
HEV topologies – P2 and P3 – are FWD, the P4 offers the AWD 
(all‑wheel drive) capability, although aspects such as climbing 
ability are not considered. P2 and P4 solutions are especially 
common nowadays, with P2 being probably cheaper and easier 
to integrate into an existing conventional powertrain (depending 
on the original vehicle that is hybridized). The additional masses 
are then in Table 2: HEV masses include high voltage battery 
mass of 110 kg, EM mass of 35 kg, and estimated masses for 
transmission adjustments, and additional clutches (K0 clutch for 
P2; P4 clutch). 

High voltage battery is based on a Samsung SDI lithium ion 
prismatic battery cells with capacity of 37 Ah, and nominal 
voltage of 3.7 V. The battery system is then configured into 
104s1p (104 cells in series, one in parallel), giving the total 
energy capacity of 14.8 kWh at nominal voltage of 400 V.

TABLE 2: Additional masses of ICE and HEV components
TABULKA 2: Dodatečné hmotnosti spalovacích motorů a hybridních 
komponentů.

2.0 NA 130 [kg]

1.5 TC 120 [kg]

1.0 TC 110 [kg]

P2 HEV 165 [kg]

P3 HEV 150 [kg]

P4 HEV 190 [kg]

The powertrain hybridization ratio (PICE /PEM) is kept fixed: three 
ICE concepts with power output of around 135 kW are combined 
with the same electric motor (EM) of 54 kW (Table 3). The BSFC 
and efficiency maps are displayed in figure 2.

TABLE 3: ICE and EM main parameters
TABULKA 3: Hlavní parametry spalovacích motorů a elektromotoru.

Maximum 
Torque 
[Nm]

Maximum 
Power 
[kW]

Speed 
Limit 
[RPM]

BSFC  
[g/kWh]

Efficiency 
[%]

2.0 NA 227 137 6500 224.9 ‑

1.5 TC 245 135 6000 237.7 ‑

1.0 TC 245 135 6000 238.5 ‑

EM 141 54 8000 ‑ 92.9

The EM presents a classical high torque – high efficiency 
synchronous traction machine with permanent magnets. It is 
downscaled from GKN’s commercial AF130 traction motor with 
130 kW, keeping the same efficiency map.

Three spark ignition, direct injection ICE concepts represent 
different levels of ICE downsizing:

• naturally aspirated 2.0 L four cylinder (2.0 NA);
• turbocharged 1.5 L three cylinder (1.5 TC) with a BMEP 

of 20.5 bar;
• highly turbocharged 1.0 L three cylinder (1.0 TC) with 

a BMEP of 31.0 bar.
FIGURE 1: Parallel HEV topologies components’ layout
OBRÁZEK 1: Uspořádání komponentů v paralelních HEV topologiích
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Turbocharged concepts use a single‑stage charging 
system with charge‑air‑cooler, lowered compression ratios 
(compared to 2.0 NA), together with intake and exhaust 
variable valve timing (VVT); the 2.0 NA concept uses VVT 
only on the intake side.
The 2.0 NA concept represents a state‑of‑the‑art direct 
injection naturally aspirated engine, with the best BSFC 
from all concepts. A great advantage – in comparison to the 
turbocharged concepts – should be its relative simplicity, 
reliability, and therefore also cost. The 1.5 TC concept’s 
performance and technology represent a standard in current 
downsizing era. The 1.0 TC should be the best from the 
packaging and mass viewpoint. However, this is offset by 
higher price, and poorer low‑end‑torque performance.
All three ICE concepts are matched to a distinct six‑speed 
transmission with progressive and sporty gear ratios (figure 3). 
The transmissions’ efficiencies are taken from a similar 
production transmission, the other driveline efficiencies are kept 
constant. P4 variant adds a single‑speed transmission, again 
with constant efficiency, and total gear ratio of 6.2 (transmission 

gear ratio of 2.48 and differential gear ratio of 2.5), that allows 
for the EM use below 150 km/h, then it is de‑clutched.

3. SIMULATION METHODOLOGY
There are two basic vehicle simulation methods in GT‑Suite: 
a kinematic method, and a dynamic method. Our simulation 
methodology fully exploits these two different modelling 
options, together with the modularity of GT‑Suite simulation 
software package.
The first one – backward kinematic – calculates the ICE/EM 
operating point from the imposed vehicle speed, and from the 
vehicle external loads (optionally imposing ICE/EM speed and 
load, then called a forward kinematic method).
The second method – dynamic – performs the physical 
sequence of actions as in the real‑life vehicle with a driver: 
driver operates the accelerator and brake pedals, and shifts 
gears; his commands are then interpreted in an ECU model, 
and sent to the plant models (ICE, EM, etc.), the same way as 
in a real vehicle, resulting in vehicle acceleration.

 

 
FIGURE 2: BSFC maps of ICE concepts; EM efficiency map
OBRÁZEK 2: Měrná spotřeba konceptů spalovacích motorů; mapa účinnosti elektromotoru
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The next chapters from 3.1. to 3.5. give a comprehensive look 
on the use of the two vehicle simulation methods in our studies: 
3.1. shows how we work with these different simulation 
models; then we discuss the two optimal control methods (in 
3.2. and 3.3.) with some heuristic criteria (in 3.4.); and 3.5. 
finally shows the different simulation test, that serve either for 
benchmark studies, or for vehicle homologation results. 

3.1. SIMULATION MODELS
There are two models for each HEV powertrain topology: 
a dynamic model (DYN), and a kinematic model (KIN). Both 
are built using interchangeable modules or sub‑systems 
(e.g. ICE model, EM model, HV‑Battery model etc.) for each 
simulation method, with the same database containing the 
vehicle data and parameters from chapter 2. This combined 
approach of using modular models in combination with 
parameter database aids the general use and simulation 
work, together with simple possible replacement of some 
sub‑system with a new one, that for instance accounts for 
more detailed physical behavior, or control logic. These 
changes can be then done easily and quickly for each HEV 
powertrain model.
KIN models are used for the ICEV CO2 results simulation and 
since the optimal control methods – that will be discussed 
in next chapters – are coupled with the kinematic method, 
also the "Charge sustaining" (CS) CO2 results. DYN models 
are then used for the E‑range estimation and all other vehicle 
dynamics studies.
Driveline model in GT‑Suite is built by the combination with 
1D inertias with either rigid or compliant connections. The 
vehicle data in our simulation models (KIN and DYN) are then 
mostly map based.
High voltage battery is simulated as a resistive electrical‑
equivalent model with separate open‑circuit voltage, and 
internal resistance maps for charge and discharge.
Then, combustion engines are simulated through map‑based 
models with fuel consumption maps, and torque limits 
dependent on rotational speed. This map‑based approach 
for the ICE simulation does not capture well the dynamic 
effects in transient behavior, which is especially apparent for 
the turbocharged ICE concepts at vehicle dynamics test. On 
the other hand, the map‑based approach is very simple and 
giving fast simulation times, and its accuracy in the driving 
cycle simulation depends on ICEs relative power to the total 
vehicle loads (smaller ICE leads to more demanding transient 
behavior). The problem with ICE transients can be mitigated 
with additional torque rise limit maps (in [Nm/s]), or by 
more detailed physical ICE sub‑system using either full 1D 
or simplified 1D fast‑running model. However, these are not 
used in our study.

1000

2000

3000

4000

5000

6000

IC
E 

Sp
ee

d 
[R

PM
]

1.0 TC Transmission

60 [km/h]

3973 [RPM]

91 [km/h]

4212 [RPM]

129 [km/h]

4464 [RPM]

174 [km/h]

4732 [RPM]

221 [km/h]

5016 [RPM]

6000 [RPM]

Gear Ratio 1 = 3.420
Gear Ratio 2 = 2.265
Gear Ratio 3 = 1.590
Gear Ratio 4 = 1.183
Gear Ratio 5 = 0.933
Gear Ratio 6 = 0.780
FD Ratio = 3.400

1000

2000

3000

4000

5000

6000

IC
E 

Sp
ee

d 
[R

PM
]

1.5 TC Transmission

60 [km/h]

3978 [RPM]

91 [km/h]

4217 [RPM]

129 [km/h]

4470 [RPM]

173 [km/h]

4738 [RPM]

219 [km/h]

5022 [RPM]

6000 [RPM]

Gear Ratio 1 = 3.530
Gear Ratio 2 = 2.340
Gear Ratio 3 = 1.645
Gear Ratio 4 = 1.225
Gear Ratio 5 = 0.968
Gear Ratio 6 = 0.810
FD Ratio = 3.300

0 50 100 150 200 250 300
Vehicle Speed [km/h]

1000

2000

3000

4000

5000

6000

7000

IC
E 

Sp
ee

d 
[R

PM
]

2.0 NA Transmission

60 [km/h]

4301 [RPM]

90 [km/h]

4559 [RPM]

129 [km/h]

4833 [RPM]

173 [km/h]

5123 [RPM]

220 [km/h]

5430 [RPM]

6500 [RPM]

Gear Ratio 1 = 3.520
Gear Ratio 2 = 2.329
Gear Ratio 3 = 1.634
Gear Ratio 4 = 1.215
Gear Ratio 5 = 0.958
Gear Ratio 6 = 0.800
FD Ratio = 3.600

FIGURE 3: Transmission layouts for all three ICE concepts
OBRÁZEK 3: Pilové diagramy tří použitých převodovek
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The EM model is also map‑based with an efficiency map, and 
torque limits dependent on the rotational speed. Thanks to the 
very fast EMs transient response, the map‑based approach is 
accurate enough.
Finally, also the transmission models are map‑based (together 
with other gear ratios), with efficiencies that are taken from 
a similar production manual transmission, and maps dependent 
on input torque, rotational speed, and engaged gear.

3.2. DYNAMIC PROGRAMMING CONTROL METHOD IN GT-SUITE
Bellman’s principle of optimality used in the DP control method 
states [13]: “An optimal policy has the property that whatever 
the initial state and initial decision are, the remaining decisions 
must constitute an optimal policy with regard to the state 
resulting from the first decision. A complex multistage optimal 
problem can be divided into a  series of single-stage optimal 
problem. Each single-stage optimal problem is solved by 
optimal solutions, and cost function is minimized according to 
a sequence of decisions for each step.”
DP algorithm implementation within GT‑Suite is described in 
more detail in [3], therefore, we will reproduce only some of the 
most important concepts here.
The DP cost function J is defined by the equation 1, where:

• gN (xN) represents the final cost, and additional Terminal 
State Penalty TN (xN) , that partially constrains the final 
state;

• Function Lk (xk, uk(xk)) represents the cost of applying 
control μk(xk) at xk, according to the control problem’s 
Hamiltonian function;
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The optimal policy minimizes 𝐽𝐽'(𝑥𝑥() for all admissible policies – meaning control inputs (e.g. 
powertrain mode, electrical motor torque, transmission gear etc.), where 𝜋𝜋 is the set of all of them 
(equation 4). 
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version v2020 uses only one state variable – SOC). DP then proceeds backward in time, with equation 
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.  leading to the optimal 
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the DP’s accuracy increases. Though, also the computation load is higher. Outputs from equations 5 and 
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(1)

TN is then defined in equation 2, with its Terminal State Penalty 
Weight γ, and Terminal State Penalty Exponent β. Penalty 
function pk(xk) enforces the state constraints for k = 0, 1, ... , 
N-1. Equation 3 gives the definition of pk(xk), with Penalty 
Function Weight λ, and Penalty Function Exponent α.
Battery SOC related units here are the SOC limits SOCmax and 
SOCmin, Target Battery SOC SOCtarget, and the discretized SOC 
points SOCgrid, that is used only in the equation 2.
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The optimal policy minimizes Jπ(x0) for all admissible policies – 
meaning control inputs (e.g. powertrain mode, electrical motor 
torque, transmission gear etc.), where π is the set of all of them 
(equation 4).
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The right‑hand side of equation 6 is minimized at each state‑time 
node, for each xk

i leading to the optimal control policy. However, 
Jk+1(x) is only evaluated for discretized points; output function 
fk(xi,uk) must be interpolated, since the state output is continuous 
in the state space, and so generally does not coincide with the 
state grid nodes. This introduces numerical errors and bounds the 
solution’s accuracy to the discretization of the state space, and 
control inputs. If the discretization resolution increases, also the DP’s 
accuracy increases. Though, also the computation load is higher. 
Outputs from equations 5 and 6 create the optimal control map, 
from which the algorithm derives the optimal control trajectory.
A challenge for each new DP simulation problem is to understand the 
results’ sensitivity on state variable resolution and limits (min/max 
values); sensitivities on four penalty parameters from equations 2 
(β, γ) and 3 (α, λ); and sensitivity on control variables’ discretization. 
This process can be very time consuming, but necessary.

3.3. ECMS CONTROL METHOD IN GT-SUITE
The equivalent consumption in ECMS refers in its basic form in 
equation 7, to converting the battery power Pb to an equivalent 
fuel power by using a non‑dimensional equivalence factor s, and 
adding it to an actual fuel power Pf [4].

A challenge for each new DP simulation problem is to understand the results’ sensitivity on state variable 
resolution and limits (min/max values); sensitivities on four penalty parameters from equations 2 (𝛽𝛽, 𝛾𝛾) 
and 3 (𝛼𝛼, 𝜆𝜆); and sensitivity on control variables’ discretization. This process can be very time 
consuming, but necessary. 
 
3.3. ECMS control method in GT-Suite 
The equivalent consumption in ECMS refers in its basic form in equation 7, to converting the battery 
power 𝑃𝑃< to an equivalent fuel power by using a non-dimensional equivalence factor 𝑠𝑠, and adding it to 
an actual fuel power 𝑃𝑃= [4]. 
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This equivalence factor 𝑠𝑠 depends on the driving cycle, and on battery initial/final conditions; it 
represents the cost of recharging the battery power in future (by regenerative braking or ICE charging). 
Therefore, to set the equivalence factor accurately, the future conditions (e.g. the driving cycle) need to 
be known beforehand (either for the online or offline applications). 
ECMS algorithm implementation in GT-Suite calculates the equivalent fuel consumption using the 
equation 8, combining the equivalence factor 𝑠𝑠, with a penalty function 𝑝𝑝. The equivalence factor 𝑠𝑠 can 
generally vary during the driving cycle, however in this implementation it is used as a constant. 
The penalty function 𝑝𝑝 (equation 9) helps to keep the 𝑆𝑆𝑆𝑆𝑆𝑆 within the certain limits and thus reach the 
final 𝑆𝑆𝑆𝑆𝑆𝑆 state at the end of the simulated driving cycle, where the penalty function’s exponent	𝛼𝛼 
changes it’s “aggressiveness” with 𝑆𝑆𝑆𝑆𝑆𝑆 value deviating from 𝑆𝑆𝑆𝑆𝑆𝑆0,1230. 
The user then controls the ECMS by varying these two parameters: equivalence factor 𝑠𝑠, and the penalty 
function exponent	𝛼𝛼 (Note: the penalty function exponent	𝛼𝛼 is not related to the one used in DP and can 
generally have different integer values). To simulate a “charge-sustaining” (CS) cycle, the “optimal” 
value of the 𝑠𝑠 factor must be found for the chosen hybrid powertrain and its initial/final conditions. 
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We could say, that based on the terminology mentioned in the introductory chapter from [4], this GT-
Suite’s implementation could be called a PMP method, since it works offline, and in combination with 
iterative approach to find the equivalence factor 𝑠𝑠. Also, the nature of this implementation – numerical 
minimization of the equivalent fuel consumption in each time step – should lead to an “aggressive” 
behavior and results close to DP control method – Yuan et al. [11] presented a difference only of 0.4% 
between the two methods. 
 
3.4. Additional heuristic conditions for optimal control methods 
When using either one of the optimal control algorithms above, it is suitable to have some additional 
options to “guide” the algorithm apart from the basic limits, such as battery or EM power limits etc. 
These can represent real-life scenarios and limits, that cannot be imposed by the simple control limits: 
e.g. forced ICE starts to account for heating of the catalytic converter, limiting conditions on the use of 
EV mode to ensure more predictable powertrain mode switching behavior, or imposing the limit 
conditions on maximum allowable gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the global FC (fuel consumption) 
optima. 
In the case of ECMS, this can further improve its results – and in some cases ensure method’s 
convergence to CS result, which is not guaranteed (as will be shown in a chapter 4.5). When we have a 
look on the WLTC and CS simulation, the local ECMS’s optimality leads to an almost continual battery 
charge roughly in the first half of the cycle, followed by discharge in during the second half (figure 4, 
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This equivalence factor s depends on the driving cycle, and on 
battery initial/final conditions; it represents the cost of recharging 
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the battery power in future (by regenerative braking or ICE 
charging). Therefore, to set the equivalence factor accurately, 
the future conditions (e.g. the driving cycle) need to be known 
beforehand (either for the online or offline applications).
ECMS algorithm implementation in GT‑Suite calculates the 
equivalent fuel consumption using the equation 8, combining the 
equivalence factor s, with a penalty function p. The equivalence 
factor s can generally vary during the driving cycle, however in this 
implementation it is used as a constant.
The penalty function p (equation 9) helps to keep the SOC within 
the certain limits and thus reach the final SOC state at the end of 
the simulated driving cycle, where the penalty function’s exponent 
α changes it’s "aggressiveness" with SOC value deviating from 
SOCtarget.
The user then controls the ECMS by varying these two parameters: 
equivalence factor s, and the penalty function exponent α (Note: 
the penalty function exponent α is not related to the one used in 
DP and can generally have different integer values). To simulate 
a "charge‑sustaining" (CS) cycle, the "optimal" value of the s 
factor must be found for the chosen hybrid powertrain and its 
initial/final conditions.
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final 𝑆𝑆𝑆𝑆𝑆𝑆 state at the end of the simulated driving cycle, where the penalty function’s exponent	𝛼𝛼 
changes it’s “aggressiveness” with 𝑆𝑆𝑆𝑆𝑆𝑆 value deviating from 𝑆𝑆𝑆𝑆𝑆𝑆0,1230. 
The user then controls the ECMS by varying these two parameters: equivalence factor 𝑠𝑠, and the penalty 
function exponent	𝛼𝛼 (Note: the penalty function exponent	𝛼𝛼 is not related to the one used in DP and can 
generally have different integer values). To simulate a “charge-sustaining” (CS) cycle, the “optimal” 
value of the 𝑠𝑠 factor must be found for the chosen hybrid powertrain and its initial/final conditions. 
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We could say, that based on the terminology mentioned in the introductory chapter from [4], this GT-
Suite’s implementation could be called a PMP method, since it works offline, and in combination with 
iterative approach to find the equivalence factor 𝑠𝑠. Also, the nature of this implementation – numerical 
minimization of the equivalent fuel consumption in each time step – should lead to an “aggressive” 
behavior and results close to DP control method – Yuan et al. [11] presented a difference only of 0.4% 
between the two methods. 
 
3.4. Additional heuristic conditions for optimal control methods 
When using either one of the optimal control algorithms above, it is suitable to have some additional 
options to “guide” the algorithm apart from the basic limits, such as battery or EM power limits etc. 
These can represent real-life scenarios and limits, that cannot be imposed by the simple control limits: 
e.g. forced ICE starts to account for heating of the catalytic converter, limiting conditions on the use of 
EV mode to ensure more predictable powertrain mode switching behavior, or imposing the limit 
conditions on maximum allowable gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the global FC (fuel consumption) 
optima. 
In the case of ECMS, this can further improve its results – and in some cases ensure method’s 
convergence to CS result, which is not guaranteed (as will be shown in a chapter 4.5). When we have a 
look on the WLTC and CS simulation, the local ECMS’s optimality leads to an almost continual battery 
charge roughly in the first half of the cycle, followed by discharge in during the second half (figure 4, 
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We could say, that based on the terminology mentioned in the 
introductory chapter from [4], this GT‑Suite’s implementation could 
be called a PMP method, since it works offline, and in combination 
with iterative approach to find the equivalence factor s. Also, the 
nature of this implementation – numerical minimization of the 
equivalent fuel consumption in each time step – should lead to an 
"aggressive" behavior and results close to DP control method – 
Yuan et al. [11] presented a difference only of 0.4% between the 
two methods.

3.4. ADDITIONAL HEURISTIC CONDITIONS FOR OPTIMAL 
CONTROL METHODS
When using either one of the optimal control algorithms above, it is 
suitable to have some additional options to "guide" the algorithm 
apart from the basic limits, such as battery or EM power limits etc. 
These can represent real‑life scenarios and limits, that cannot be 
imposed by the simple control limits: e.g. forced ICE starts to account 
for heating of the catalytic converter, limiting conditions on the use 
of EV mode to ensure more predictable powertrain mode switching 
behavior, or imposing the limit conditions on maximum allowable 

gear when optimizing the gear shifting strategy. This way the user 
can get some idea of an impact of these criteria or conditions on the 
global FC (fuel consumption) optima.
In the case of ECMS, this can further improve its results – and 
in some cases ensure method’s convergence to CS result, which 
is not guaranteed (as will be shown in a chapter 4.5). When we 
have a look on the WLTC and CS simulation, the local ECMS’s 
optimality leads to an almost continual battery charge roughly 
in the first half of the cycle, followed by discharge during the 
second half (figure 4, blue line). This results in sub‑optimal fuel 
consumption for the CS cycle and PHEV powertrain from the 
global point of view.
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FIGURE 4: SOC comparison of DP vs. ECMS with EVlim heuristic parameter 
turned on/off in CS WLTC
OBRÁZEK 4: Porovnání průběhů SOC algoritmů DP a ECMS s heuristickým 
parametrem EVlim zapnutým/vypnutým v „charge sustaining” módu 
jízdního cyklu WLTC

This specific problem can be mitigated by the additional heuristic 
criteria, that limits the maximum vehicle speed, when the electric 
motor can act as a "primary mover" (EVlim). Above this limit, 
the electric motor can only fulfill the load point shifting function. 
Similar methods are listed in [4]. The addition of EVlim changes 
the "charge sustaining equivalence factor s", and also affects the 
overall powertrain behavior: the battery discharges in the first 
phases of the cycle, and charges in the later phases, improving the 
overall fuel consumption (figure 4, green line). Red line in figure 4 
represents the SOC obtained with the DP algorithm.

3.5. SIMULATION TYPES AND CO2 HOMOLOGATION 
CALCULATIONS
Since one of the goals of this paper is to give a comprehensive 
benchmarking study of the three HEV topologies combined 
with three representatives of ICE downsizing level, here we 
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enumerate all simulation types and calculations, whose results 
will be presented in the next result chapter:

• First, there are two simulation tasks, that use KIN 
models: ICEV CO2 and CS CO2 (the latter combined with 
the two optimal control strategies);

• Second, the All Electric Range (AER) simulations using 
DYN models;

• Third, homologation CO2 can be calculated from 
AER and CS CO2 results, using the utility factor (UF) 
according to the WLTP homologation procedure – brief 
description follows;

• Fourth and final are the vehicle dynamics simulations 
using DYN models.

CO2 homologation procedure of hybrid vehicles (OVC‑HEVs – 
Off‑Vehicle Charging Hybrid Electric Vehicles) according to 
WLTP includes mainly CS, "Charge Depleting" (CD), and AER 
test [14]. The final combined WLTP fuel consumption (FCWLTP) is 
calculated from CS and CD consumptions, and UF corresponding 
to the AER, according the equation 10.

blue line). This results in sub-optimal fuel consumption for the CS cycle and PHEV powertrain from the 
global point of view. 
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vehicle speed, when the electric motor can act as a “primary mover” (𝐸𝐸𝐸𝐸C.+). Above this limit, the 
electric motor can only fulfill the load point shifting function. Similar methods are listed in [4]. The 
addition of 𝐸𝐸𝐸𝐸C.+ changes the “charge sustaining equivalence factor 𝑠𝑠”, and also affects the overall 
powertrain behavior: the battery discharges in the first phases of the cycle, and charges in the later 
phases, improving the overall fuel consumption (figure 4, green line). Red line in figure 4 represents the 
SOC obtained with the DP algorithm. 
 
3.5. Simulation types and CO2 homologation calculations 
Since one of the goals of this paper is to give a comprehensive benchmarking study of the three HEV 
topologies combined with three representatives of ICE downsizing level, here we enumerate all 
simulation types and calculations, whose results will be presented in the next result chapter: 

• First, there are two simulation tasks, that use KIN models: ICEV CO2 and CS CO2 (the latter 
combined with the two optimal control strategies); 

• Second, the All Electric Range (AER) simulations using DYN models; 
• Third, homologation CO2 can be calculated from AER and CS CO2 results, using the utility 

factor (UF) according to the WLTP homologation procedure – brief description follows; 
• Fourth and final are the vehicle dynamics simulations using DYN models. 

CO2 homologation procedure of hybrid vehicles (OVC-HEVs – Off-Vehicle Charging Hybrid Electric 
Vehicles) according to WLTP includes mainly CS, “Charge Depleting” (CD), and AER test [14]. The 
final combined WLTP fuel consumption (𝐹𝐹𝐹𝐹D@EF) is calculated from CS and CD consumptions, and 
UF corresponding to the AER, according the equation 10. 
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The fractional utility factor UFj is determined by the equation 11 
for a distance dj driven at the jth period of the WLTC: Ci is a set of 
coefficients determined by the WLTP standard, and dn represents 
a normalized distance.

The fractional utility factor 𝑈𝑈𝑈𝑈G is determined by the equation 11 for a distance 𝑑𝑑G driven at the jth period 
of the WLTC: 𝐶𝐶. is a set of coefficients determined by the WLTP standard, and 𝑑𝑑/ represents a 
normalized distance. 
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The All Electric Range represents a distance driven from fully charged battery, until the WLTC phase, 
when the engine first starts. 
 
4. Simulation results 
The WLTP requires a CS, and AER tests for CO2 or fuel consumption evaluation. Since the analyzed 
powertrains are all PHEV type, the CS driving cycle initial and target SOC values are set to 30 %, which 
would correspond to a usual PHEV battery use: when the battery is charged, the vehicle uses mostly EV 
mode; then if the SOC level is low (usually around 20-30 % SOC) it switches to HEV mode. 
During the entire CS test all three topologies can use the ICE load-point-shifting (LPS) in HEV mode 
(in case of P4 it is “through-the-road”), together with EV mode. The optimal use of EV to HEV mode 
switching, and LPS is determined by the DP or ECMS control algorithms, switching the ICE off in the 
EV mode. 
The AER tests start at SOC of 96 %, the AER test stops then at 35 %. Similarly, the vehicle dynamics 
tests start with full battery (HEV and EV tests), disregarding any derating behavior of the electrical 
components. 
Regarding the gear shifting strategy, all the sets of results, except for 4.3, use shifting strategy generated 
by the WLTP. The sensitivity in 4.3 compares the WLTP strategy with the “DP-optimized” shifting, 
only for the P2 topology. 
The combination of CO2 homologation simulations and vehicle dynamics tasks presents a full 
development and benchmarking methodology for HEV powertrains comparison. The results show the 
sensitivities on a topology type and a synergy effect between the ICE downsizing and powertrain 
hybridization. The vehicle dynamic tests results further show the importance of holistic approach to the 
optimization of these powertrains.  
 
4.1. ICEV sensitivity on ICE technology 
This first ICEV powertrain sensitivity on different ICE concepts (Table 4) reveals an anticipated fact, 
that the downsized engines provide better fuel economy in homologation driving cycles. Higher ICE 
downsizing levels achieve lower fuel consumption and CO2 production. 
 

ICE FC 
[L/100km] 

CO2 

[g/km] 
2.0 NA 6.115 139.42 

1.5 TC 5.777 131.72 

1.0 TC 5.251 119.72 
Table 4: Fuel consumption and CO2 sensitivity on different ICE concepts 
Tabulka 4: Spotřeba paliva a produkce CO2 pro různé koncepty spalovacích motorů 

 
4.2. Overall FC/CO2 results (HEV topologies vs. ICE concepts) 
Table 5 shows the overall results of all three PHEV topologies, combined with the three ICE concepts: 
CS mode and combined values, together with AER, UF, and ΔCO2 potential compared to respective 
ICEV concepts. The CS mode results were simulated using DP control method, with the SOC resolution 
(𝑆𝑆𝑆𝑆𝐶𝐶21.4) of 1% (101 SOC levels), with 𝐸𝐸𝐸𝐸C.+ parameter turned off. 
 

 ICE CS mode 
FC 

CS mode 
CO2 

AER 
[km] 

UF 
[-] 

Combined 
FC 

Combined 
CO2 

Combined 
ΔCO2 

(11)

The All Electric Range represents a distance driven from fully 
charged battery, until the WLTC phase, when the engine first starts.

4. SIMULATION RESULTS
The WLTP requires a CS, and AER tests for CO2 or fuel consumption 
evaluation. Since the analyzed powertrains are all PHEV type, 
the CS driving cycle initial and target SOC values are set to 30 %, 
which would correspond to a usual PHEV battery use: when the 
battery is charged, the vehicle uses mostly EV mode; then if the 
SOC level is low (usually around 20‑30 % SOC) it switches to 
HEV mode.
During the entire CS test all three topologies can use the 
ICE load‑point‑shifting (LPS) in HEV mode (in case of P4 it is 
"through‑the‑road"), together with EV mode. The optimal use of 
EV to HEV mode switching, and LPS is determined by the DP or 
ECMS control algorithms, switching the ICE off in the EV mode.

The AER tests start at SOC of 96 %, the AER test stops then at 
35 %. Similarly, the vehicle dynamics tests start with full battery 
(HEV and EV tests), disregarding any derating behavior of the 
electrical components.
Regarding the gear shifting strategy, all the sets of results, 
except for 4.3, use shifting strategy generated by the WLTP. 
The sensitivity in 4.3 compares the WLTP strategy with the 
"DP‑optimized" shifting, only for the P2 topology.
The combination of CO2 homologation simulations and vehicle 
dynamics tasks presents a full development and benchmarking 
methodology for HEV powertrains comparison. The results show 
the sensitivities on a topology type and a synergy effect between 
the ICE downsizing and powertrain hybridization. The vehicle 
dynamic tests results further show the importance of holistic 
approach to the optimization of these powertrains. 

4.1. ICEV SENSITIVITY ON ICE TECHNOLOGY
This first ICEV powertrain sensitivity on different ICE concepts 
(Table 4) reveals an anticipated fact, that the downsized engines 
provide better fuel economy in homologation driving cycles. 
Higher ICE downsizing levels achieve lower fuel consumption 
and CO2 production.

TABLE 4: Fuel consumption and CO2 sensitivity on different ICE concepts
TABULKA 4: Spotřeba paliva a produkce CO2 pro různé koncepty 
spalovacích motorů

ICE FC
[L/100km]

CO2

[g/km]

2.0 NA 6.115 139.42

1.5 TC 5.777 131.72

1.0 TC 5.251 119.72

4.2. OVERALL FC/CO2 RESULTS  
(HEV TOPOLOGIES VS. ICE CONCEPTS)
Table 5 shows the overall results of all three PHEV topologies, 
combined with the three ICE concepts: CS mode and combined 
values, together with AER, UF, and ΔCO2 potential compared to 
respective ICEV concepts. The CS mode results were simulated 
using DP control method, with the SOC resolution (SOCgrid) of 
1% (101 SOC levels), with EVlim parameter turned off.
First main observation is that the P4 topology has the biggest 
overall homologation CO2 potential (ΔCO2 in the last column in 
table 5), followed by P2, and P3 topologies. The same applies for 
the AER values, that dictate the UF then used for the combined 
homologation FC/CO2 calculation (equations 10 and 11, with CD 
mode gCO2/km equal to zero).
Considering that the P3 and P4 topologies work in a very similar 
way, the AER potential and subsequent combined FC results are 
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much better for the P4. The difference comes mainly from the 
much more favorable total gear ratio for the P4, together with 
better efficiencies in EV mode. The comparison of EM operating 
points in figure 5 indicates, that the EM in P3 topologies spends 
a lot of time in low speed – high torque regions; the P4 gear 
ratio on the other hand allows for generally higher EM operating 
speeds with better overall efficiencies.

A natural expectation for the P2 topology is, that it would 
use the ability to shift gears also in EV mode to offset the 
transmission efficiency disadvantage (compared for instance 
to P3 or P4). However, for the case of overall results, the gear 
shifting strategy comes from WLTP – generated based on ICE 
performance, not EMs – which proves to be problematic. It is 
once again in full display in figure 5 with EM operating points, 

TABLE 5: Overall fuel consumption and CO2 results (HEV topologies vs. ICE concepts)
TABULKA 5: Celkové výsledky spotřeb paliva a produkce CO2 (topologie HEV vs. koncepty spalovacích motorů)

ICE CS mode
FC

[L/100km]

CS mode
CO2

[g/km]
AER
[km]

UF
[‑]

Combined
FC

[L/100km]

Combined
CO2

[g/km]

Combined
ΔCO2

[g/km]

P2W

2.0 NA 4.446 101.37 62.5 0.777 0.989 22.56 ‑116.86

1.5 TC 4.618 105.29 62.2 0.777 1.028 23.43 ‑108.28

1.0 TC 4.438 101.19 62.3 0.777 0.988 22.52 ‑97.20

P3

2.0 NA 4.273 97.42 56.1 0.753 1.058 24.11 ‑115.31

1.5 TC 4.506 102.74 53.6 0.734 1.198 27.32 ‑104.40

1.0 TC 4.378 99.82 55.0 0.753 1.084 24.70 ‑95.02

P4

2.0 NA 4.213 96.06 66.4 0.777 0.938 21.38 ‑118.05

1.5 TC 4.364 99.50 66.7 0.777 0.971 22.14 ‑109.57

1.0 TC 4.293 97.88 66.9 0.777 0.955 21.78 ‑97.94

FIGURE 5: EM operating points in WLTC, driven in EV mode
OBRÁZEK 5: Pracovní body elektromotoru v jízdním cyklu WLTC, v elektrickém módu
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where the EM operating points for P2 are "compressed" to the 
low speed regions with lower efficiencies.
Figure 6 depicts the CS mode CO2 values only, and gives 
us another interesting observation, that the best CS mode 
results are achieved with 2.0 NA concept and not with the 
turbocharged concepts: there is no synergy effect between the 
powertrain hybridization and ICE downsizing. The explanation 
lays in the BSFC maps: 2.0 NA best value is 12.8/13.7 g/kWh 
better compared to 1.5 TC and 1.0 TC respectively. CO2 value 
for 1.0 TC in ICEV powertrain is already very good, thus it’s 
hybridization CS mode potential in all PHEV topologies is 
the smallest. However, for 1.5 TC versus 1.0 TC comparison 
the downsizing effect is lowered by the effect of powertrain 
hybridization.
From the vehicle homologation perspective, these CS mode 
sensitivities do not play any role. The only important result is 
the combined CO2 values from the table 5, where the WLTP 
calculation clearly prefers the AER before the CS mode. However, 
the CS mode results could be interesting from the point of view 
of the OEMs: cheaper, higher‑displacement ICEs, hybridized in 
a clever way can bring some economic benefits.

4.3. P2 SENSITIVITY ON GEAR SHIFTING
The overall results from the above chapter showed P2 fuel 
consumption using WLTP generated gear shifting points. Further 
gear shifting optimization using DP algorithm for the P2 topology 
in CS mode shows another CO2 potential ("DP‑optimized" in 
and figure 7) in comparison to the WLTP shifting strategy.
The 1.5 TC and 2.0 NA concept achieve a very similar additional 
CS mode CO2 improvement (both at ~10 gCO2/km), and the 1.0 
TC only ~5 gCO2/km.

We did not calculate the further CO2 potential from the 
homologation perspective, because this requires also the AER 
simulation with optimized gear shifting strategy. However, the 
CS mode improvement indicates, that the AER results will also 
be improved, leading to even lower homologation CO2 values.
Concluding this sensitivity, it is important to once again 
stress, that 2.0 NA concept still proves having the highest 
hybridization potential.

4.4. DP VS. ECMS CONTROL STRATEGY SENSITIVITY
This next sensitivity compares ECMS and DP algorithms’ 
performance. Figure 8 shows three of the nine total combinations 
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of HEV topology and ICE concept. All the results use the same 
EVlim parameter of 77 km/h. For the ECMS results, we had to 
calibrate the equivalence factor s for each of the simulations – 
to reach the CS cycle; for the DP simulations we have tried 
different SOC resolutions, starting with 1% of the SOC span 
(defined by the SOCmax and SOCmin values), that divides the 
SOC span to 101 SOC levels. The 0.5% resolution uses 201 
levels, and 0.1% 1001 levels. Higher number of SOC level leads 
to results closer to global optimum, but also the simulation 
times are longer: 0.1% resolution leads to approximately 
10‑times longer simulation than 1%.
However, a look on figure 8 reveals, that the GT‑Suite’s ECMS 
implementation performs better than DP implementation for 
two of the three topologies (results are consistent for all ICE 
concepts). The only case when the DP is closer to a global 
optimum are the P3 topology results. Differences of FC/CO2 are 
in favor of ECMS for the P2 (~2%), and P4 (~4%), and in favor 
of the DP (~1.5%) for the case of P3 topology.
It is also important to note, that the procedure of finding the 
CS equivalence factor s requires an iterative process – usually 
20‑40 simulations. It takes approximately the same simulation 
time to reach the CS results with ECMS, as to simulate one DP 
run with 1% SOC resolution.
The first reason for the rather unexpected result for the P2 
and P4 topologies can be the way how the ECMS and DP 
use their penalty functions: it is possible, that using the same 
formulation of penalty functions, or not using any at all, could 

resolve the difference. The second possible reason is the 
different sensitivities of both methods on control variables, 
that were set‑up the same way in our simulations.
However, from the user point of view, the simulations with DP 
algorithm may take more time, and not always reach the global 
optima "as advertised", but they may be more comfortable to 
work with, since they do not require the iterative process of 

TABLE 6: Acceleration results for 2.0 NA concept and all HEV topologies
TABULKA 6: Akcelerace pro koncept spalovacího motoru 2.0 NA a všechny HEV topologie 

Mode Topology 0‑100 km/h [s] 60‑80 km/h [s] 60‑100 km/h [s] 80‑120 km/h [s]

Gear 5 Gear 6 Gear 5 Gear 6 Gear 5 Gear 6

HEV

P2 5.1 3.1 3.7 5.8 7.2 5.8 7.4

P3 6.3 3.0 3.2 5.6 6.3 5.6 6.5

P4 5.8 2.4 2.5 4.8 5.3 5.4 6.1

ICEV

P2 8.2 5.7 7.0 10.9 14.1 10.7 14.5

P3 8.1 5.7 7.0 10.9 14.1 10.7 14.5

P4 8.3 5.8 7.1 11.1 14.4 10.9 14.8

EV

P2 15.8 7.1 9.3 15.3 19.4 16.9 22.2

P3 32.2 6.9 6.8 14.0 14.0 15.4 15.4

P4 20.3 4.1 4.1 9.6 9.6 13.7 13.7

EVlim 77km/h optimized EVlim no EVlim
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equivalence factor s calibrations. The crucial fact is, that the 
results for both the ECMS and DP GT‑Suite implementations 
are qualitatively the same (general behavior is the same with 
all ICE concepts and HEV topologies), although quantitatively 
there are some differences.

4.5. ECMS SENSITIVITY ON MAXIMUM VEHICLE SPEED 
IN EV MODE
The last set of CS mode simulations is the ECMS control method 
sensitivity on the EVlim parameter. Similarly, as for the penultimate 
sensitivity in chapter 4.4, we show only some of the results.
The optimized EVlim values generally achieve the best CO2 
results (figure 9). But, the sensitivity of all ICE concept and HEV 
topology combinations in CS mode vary:

• P4 topology with 1.0 TC concept, and all the P2 
combinations are not able to reach the CS mode 
in simulations with EVlim parameter turned off 
(explanation in chapter 3.4);

• 2.0 NA concept – for all topologies – achieves the best 
results using EVlim above 100 km/h;

• P3 topology also achieves the best results using EVlim 
above 100 km/h – for all ICE concepts;

• 1.0 TC concept uses relatively low EVlim values in 
combination with P2 and P4 topologies;

• P4 topology’s optimal EVlim values decrease with 
increasing ICE downsizing level;

• The lowest sensitivity of all combinations is for P4 
topology with 1.5 TC concept, where the CO2 results 
change only around one gCO2/km.

Finally, for some combinations, the EVlim optimization can bring 
up to 5 gCO2/km potential.

4.6. OVERALL VEHICLE DYNAMICS RESULTS
We have prepared several vehicle dynamics scenarios to compare 
the different hybridization variants: acceleration of 0‑100 km/h, 
60‑80 km/h, 60‑100 km/h, and 80‑120 km/h, and the maximum 
vehicle speed simulation. We have simulated all HEV powertrain 
and ICE concept combination; however, here we present only the 
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2.0 NA concept results, as the map‑based approach does not 
capture well the dynamic effects of turbocharged ICE concepts 
1.0 TC, and 1.5 TC – as it was discussed in chapter 3.1. The P2, 
P3, and P4 topologies are compared in three different modes: 
hybrid (HEV), conventional (ICEV), and pure electric (EV).

4.6.1 ACCELERATION RESULTS
The acceleration tests consist of 0‑100 km/h acceleration, and 
then the tests of 60‑80 km/h, 60‑100 km/h, and 80‑120 km/h 
accelerations at the 5th and 6th gear, for all driving modes (HEV, 
ICEV, EV). The gear shifting strategy for 0‑100 km/h acceleration 
considers the maximum ICE or EM speed. All acceleration results 
are listed in table 6, and shown in figures 10, and 11.
The P2 topology achieves the best 0‑100 km/h acceleration in 
combined HEV mode, followed by the P4, and P3 topologies 
(figure 10). The case of EV acceleration shows the same 
order in topologies’ performance: the best result is achieved 
by the P2, followed by P4, and finally P3. The ICEV 0‑100 
km/h accelerations are the only accelerations, where the 
variation is very low: all achieve results around 8.2 seconds. 
The HEV and EV results are strongly influenced by the gear 
ratios available for the EM: the P2 topology can shift gears, 
whereas the P3, and P4 can only make use of single gear, 
which is more beneficial for P4. Finally, the EV accelerations 
are logically also limited by the maximum EM power.
The rest of the table 6 contains the other accelerations at constant 
gear: sensitivities 60‑80 km/h, 60‑100 km/h, and 80‑120 km/h, 
both on 5th gear, and 6th gear; all for 2.0 NA engine concept. The 
80‑120 km/h scenario at 5th gear is shown in figure 11.
Also, these results are influenced mostly by the total gear ratios 
for different machines (ICE, EM): the P4 topology performs 
consistently as the best for both the HEV and EV acceleration 
modes, and P2 as the worst; the ICEV accelerations show 
very little sensitivity, because the only differences are the 
drivetrain efficiencies, and vehicle masses. The biggest 
variation happens again in case of EV acceleration mode, as 
the topologies vary greatly in their final gear ratios.
The 6th gear acceleration modes are qualitatively the same as 
on 5th gear.

4.6.2 MAXIMUM VEHICLE SPEED
The final test is the vehicle maximum speed, which depends 
mainly on the maximum total powertrain power, available 
for different driving modes (figure 12). The combined HEV 
maximum speed is transmission range limited and exceeds 
the vehicle speeds of 250 km/h for both the P2 and P3 
topology. The P4 maximum HEV speed is in this case the same 
as for ICEV driving mode, due to P4 electric motor speed limit, 
as the EM is declutched above 150 km/h, and therefore not 

providing power. The ICEV maximum speeds are all around 
238 km/h.
Finally, the maximum achievable EV speeds are all limited by 
the EM maximum power of 54 kW, the P3 performing better 
then P2 topology. P4 maximum EV speed is also limited by 
abovementioned EM speed limit, that is bound to the rear 
axle gear ratio design. 

5. CONCLUSIONS
Our paper presents a full development and benchmarking 
methodology for HEV powertrains, that is built on GT‑Suite 
simulation software platform. The methodology consists 
of a combination of vehicle CO2 homologation simulations 
(using WLTP methodology), and some vehicle dynamics 
tasks (different accelerations test, and maximum vehicle 
speed test).
We have prepared HEV simulation models using two different 
simulation approaches: a backward‑kinematic approach 
(KIN models), and a dynamic approach (DYN models). Our 
KIN models are combined with GT‑Suite’s built‑in optimal 
energy management control methods ECMS and Dynamic 
Programming (DP). Both KIN and DYN models were then used 
for the CO2 WLTP homologation studies, obtaining Charge 
Sustaining (CS) CO2, and All Electric Range (AER) results, 
together with the already mentioned additional vehicle 
dynamics results.
The whole presented methodology was tested on three 
different HEV topologies (P2, P3, and P4) in combination with 
three different ICE concepts (2.0 NA, 1.5 TC, and 1.0 TC), at 
the same hybridization level (with PICE of 135 kW and PEM of 
54 kW), using a six‑speed transmissions, for a C‑class plug‑in 
HEV with a 14.8 kWh high voltage battery. All combinations 
show very good results compared to conventional powertrain, 
either in CO2 homologation tests, or in vehicle dynamics tests:

• ICEV comparison of the three ICE concepts with 
different downsizing levels reveal a well‑known 
fact, that downsized engines perform better in 
homologation driving cycles, such as WLTC;

• Total CO2 reduction potentials from ICEV to 
PHEV homologation CO2 values are similar for all 
powertrains, ranging from ‑95 to ‑119 gCO2/km;

• The first part of the homologation are the AER tests, 
that show greater potentials for P4 and P2 HEV 
variants, since these use the EM in a more efficient 
manner, reaching AER values of ~66.7 km (P4), 
~62.3 km (P2). However, the P3 also achieves high AER 
values of ~54.9 km;

• The second part of the homologation are the CS tests, 
where the different HEV powertrain combinations 
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reach CO2 reduction potentials from ‑22 to ‑45 gCO2/
km (using DP control method);

• The P4 powertrains perform the best in the CS tests, together 
with the 2.0 NA ICE concept – on the other end of the 
results were the P2 topology, and the 1.5 TC concept;

• The P2 topology CS results can be further improved 
by the gear shifting strategy optimization: bringing 
additional ~5‑10 gCO2/km improvement, beating the 
abovementioned P4 results;

• The vehicle 0‑100 km/h acceleration tests show the 
biggest performance benefit for P2 – that shifts gears 
also for the EM – followed by the P4, and then P3;

• The P4 topology then performs best at constant gear 
vehicle acceleration tests, followed by the P3, and P2.

There are three main conclusions from the PHEV homologation 
and vehicle dynamics studies:
1. There is no synergy effect between the powertrain 

hybridization and ICE downsizing, the trend seems to be 
rather opposite: 2.0 NA concept is reaching the highest 
CO2 reduction potentials;

2. It is valuable to optimize the HEV topology having the ICE 
concept in mind; however, the current PHEV homologation 
favors the AER, which may discourage developments in 
this area: the "simple" addition of a large enough battery 
(with AER of 50 km), reduces the homologation CO2 by 
90 gCO2/km or more;

3. The vehicle dynamics tests further stress the importance 
of holistic HEV powertrain optimization: especially the 
transmissions gear ratios, with the goal of getting the best 
also out of the EM operation.

Apart from the overall homologation CO2 and vehicle dynamics 
studies, we have also tested the performance of the GT‑Suite’s 
implementations of ECMS and DP optimal control methods:

• DP control method is generally more computationally 
demanding, but offers a user advantage of not having to 
calibrate for a correct equivalence factor to reach a CS 
cycle condition, as for the ECMS method;

• Rather surprising result of the comparison of these 
two control methods in GT‑Suite is, that in some cases 
the ECMS can reach values closer to the theoretical 
global optimum compared to DP method, which is 
"advertised" as the globally optimal control method;

• However, both methods are consistent, providing 
qualitatively the same results, showing similar trends;

• Both methods are sensitive on their settings: in the case 
of DP it is the discretization of control inputs, and of state 
variable; ECMS is sensitive on the equivalence factor;

• Additional heuristic parameters help ensure the CS 
convergence of ECMS method and can further improve 
the CO2 results.

Our further work will focus mainly on two areas: first is the 
amplification of the HEV model database – adding more HEV 
topologies; and second, embedding our simulation methodology 
into a multi‑parametric and multi‑objective HEV powertrain 
optimization strategy.
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LIST OF NOTATIONS AND ABBREVIATIONS
AER All Electric Range
AWD All‑wheel drive
BSFC Brake‑specific fuel consumption
CAE Computer Aided Engineering
CD Charge Depleting
CO2 Carbon dioxide
CS Charge Sustaining
DP Dynamic Programming
DYN Dynamic model
ECMS Equivalent Consumption Minimization Strategy
ECU Engine Control Unit
EM Electric motor
EV Electric Vehicle
FC Fuel Consumption
FWD Front‑wheel drive
GT Gamma Technologies
HEV Hybrid electric vehicle
HV High voltage
ICE Internal combustion engine
ICEV Internal Combustion Engine Vehicle
KIN Kinematic model
LPS Load Point Shifting
NA Naturally aspirated 
OEM Original Equipment Manufacturer
OVC‑HEV Off‑Vehicle Charging Hybrid Electric Vehicle
PHEV Plug‑In Hybrid Electric Vehicle
PMP Pontryagin’s minimum principle 
RDE Real Driving Emissions
RPM Revolutions per minute
SOC State of Charge
TC Turbocharged
UF Utility Factor
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VVT Variable valve timing
WLTC Worldwide Harmonized Light‑Duty Vehicles Test Cycle
WLTP Worldwide Harmonized Light‑Duty Vehicles Test 

Procedure
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