Global sensitivity analysis of polymer ablation modeling for magnetohydrodynamic fault arc models
DOI:
https://doi.org/10.14311/ppt.2025.2.99Keywords:
sensitivity analysis, magnetohydrodynamic (MHD), fault arcs, switchgear, numerical arc simulationAbstract
Magnetohydrodynamic fault arc model calibration presents a key challenge. The current literature lacks efficient approaches to calibrate and validate these models. A global sensitivity analysis of the ablation model is conducted to reduce the number of calibration parameters, using the Elementary Effect and Morris method. By analyzing sensitivities of calibration parameters, combined with the model outputs' standard deviation uncertainty quantification is achieved. The results help reduce uncertain parameters and improve calibration efficiency.
References
C. Rümpler and V. R. T. Narayanan. Arc Modeling Challenges. Plasma Physics and Technology, 2:261–270, 2015.
F. Reichert and A. Petchanka. 3D CFD Arc Fault Simulation in Gas-Insulated Switchgears. Plasma Physics and Technology, 6(1):35–38, 2019. doi:10.14311/ppt.2019.1.35.
G. Lin and G. E. Karniadakis. Sensitivity analysis and stochastic simulations of non–equilibrium plasma flow. International Journal for Numerical Methods in Engineering, 80(6-7):738–766, 2009. doi:10.1002/nme.2582.
S. Pfau. A sensitivity analysis method for evaluating the effect of input parameter uncertainty on the results of the PALM model system. doi:10.15488/16941.
P. F. Pelz, P. Groche, M. E. Pfetsch, and M. Schaeffner. Mastering Uncertainty in Mechanical Engineering. Springer International Publishing, Cham, 2021. ISBN 978-3-030-78353-2. doi:10.1007/978-3-030-78354-9.
D. Vandepitte and D. Moens. Quantification of uncertain and variable model parameters in non-deterministic analysis. In IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, volume 27 of IUTAM Bookseries, pages 15–28. Springer Netherlands, Dordrecht, 2011. ISBN 978-94-007-0288-2. doi:10.1007/978-94-007-0289-9_2.
S. I. Repin and S. A. Sauter. Accuracy of Mathematical Models, volume 33. EMS Press, 2020. ISBN 978-3-03719-206-1. doi:10.4171/206.
A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modelling. Journal of Physics D: Applied Physics, 38(9):R153–R183, 2005. doi:10.1088/0022-3727/38/9/R01.
W. Rodi. Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall. In 29th Aerospace Sciences Meeting, Reston, Virigina, 1991. American Institute of Aeronautics and Astronautics. doi:10.2514/6.1991-216.
T.-H. Shih, W. W. Liou, A. Shabbir, et al. A new k-epsilon eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3):227–238, 1995. doi:10.1016/0045-7930(94)00032-T.
C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. PhD thesis, Technische Universität Ilmenau, Ilmenau, 2009.
F. Reichert. Numerische Simulation strömungsmechanischer Vorgänge in SF6-Hochspannungsleistungsschaltern. Habilitation thesis, Technische Universität Ilmenau, Ilmenau, 2015.
Y. Cressault, S. Kimpeler, A. Moser, and P. Teulet. Thermophysical Properties of Air-PA66-Copper Plasmas for Low-Voltage Direct Current Switches. Plasma Physics and Technology, 10(1):52–55, 2023. doi:10.14311/ppt.2023.1.52.
S. Kimpeler, F. Mingers, V. West, et al. Influence of Polyamide 6.6 Ablation on Direct Current Arcs - Experiment and Simulation. Unpublished Journal Article, 2025.
M. F. Modest. Radiative Heat Transfer. Academic Press, New York, 2013. ISBN 0123869447.
P. Kloc, V. Aubrecht, and M. Bartlova. Numerically optimized band boundaries of Planck mean absorption coefficients in air plasma. Journal of Physics D: Applied Physics, 50(30), 2017. doi:10.1088/1361-6463/aa7627.
S. Bashkin and J. O. Stoner. Atomic energy-level and Grotrian diagrams, volume I. North-Holland Publ. Co, Amsterdam, 1975. ISBN 978-0-7204-0322-0.
W. Grotrian. Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei und drei Valenzelektronen. Springer Berlin Heidelberg, Berlin, Heidelberg, 1928. ISBN 978-3-642-88886-1. doi:10.1007/978-3-642-90741-8.
J. Sugar and A. Musgrove. Energy Levels of Copper, Cu I through Cu. Journal of Physical and Chemical Reference Data, 19(3):527–616, 1990. doi:10.1063/1.555855.
P. Kloc, V. Aubrecht, M. Bartlova, and R. Fuchs. Comparison of Mean Absorption Methods for Radiation Transfer Models in Air Plasma at Various Pressures. Plasma Chemistry and Plasma Processing, 43(2):429–447, 2023. doi:10.1007/s11090-022-10304-9.
T. Ballweber. Untersuchungen zur Druckentwicklung in leistungsstarken Niederspannungs-Schaltanlagen im Störlichtbogenfall. PhD thesis, RWTH Aachen University, 2023. doi:10.18154/RWTH-2024-00217.
J.-J. Gonzalez, P. Freton, F. Reichert, and A. Petchanka. PTFE Vapor Contribution to Pressure Changes in High-Voltage Circuit Breakers. IEEE Transactions on Plasma Science, 43(8):2703–2714, 2015. doi:10.1109/TPS.2015.2450536.
N. Bityurin, B. S. Luk’yanchuk, M. H. Hong, and T. C. Chong. Models for laser ablation of polymers. Chemical reviews, 103(2):519–552, 2003. doi:10.1021/cr010426b.
C. K. Law. Combustion Physics. Cambridge University Press, 2010. ISBN 9780521870528. doi:10.1017/CBO9780511754517.
M. D. Morris. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics, 33(2):161, 1991. doi:10.2307/1269043.
F. Campolongo, J. Cariboni, and A. Saltelli. An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software, 22(10):1509–1518, 2007. doi:10.1016/j.envsoft.2006.10.004.
R. J. L. Rutjens, L. R. Band, M. D. Jones, and M. R. Owen. Elementary effects for models with dimensional inputs of arbitrary type and range: Scaling and trajectory generation. PloS one, 18(10), 2023. doi:10.1371/journal.pone.0293344.
F. Mingers, S. Kimpeler, and W. Leterme. Experimental characterization of evaporation processes of copper and polyamide 6.6 caused by fault arcs. Physica Scripta, 100(7):075613, 2025. doi:10.1088/1402-4896/ade2ab.
F. Reichert, J.-J. Gonzalez, and P. Freton. Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. Journal of Physics D: Applied Physics, 45(37):375201, 2012. doi:10.1088/0022-3727/45/37/375201.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 F. Mingers, S. Kimpeler, W. Leterne

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).