Modelling of switching arcs at short electrode distances

Authors

  • S. Gortschakow Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
  • R. Methling Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
  • D. Gonzalez Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

DOI:

https://doi.org/10.14311/ppt.2025.1.28

Keywords:

fluid simulations, arc plasma, non-equilibrium plasma, microarc

Abstract

Properties of the arc plasma at electrode distances below 1 mm have been studied by one-dimensional time-dependent (1D-t) fluid-Poisson model. Silver vapour is assumed to be the arc medium, as the electrodes mainly contain Ag. Pronounced voltage falls in the near-electrode regions were found. The model predicts clear thermal non-equilibrium as well as negative anode fall in case of small DC currents. For implementation in power grids simulations, a simplified arc model in form of current – voltage characteristics was derived. Predicted modelling results for electrical characteristics at various conditions have been compared with experimental results obtained for a low-voltage DC hybrid switch. A reasonable agreement between predicted and measured data was found.

References

M. M. Becker and D. Loffhage. Enhanced reliability of drift-diffusion approximation for electrons in fluid models for nonthermal plasmas. AIP Advances, 3:012108, 2013. doi:10.1063/1.4775771.

M. M. Becker and D. Loffhage. Derivation of moment equations for the theoretical description of electrons in nonthermal plasmas. Adv. Pure Math., 3:343–352, 2013. doi:10.4236/apm.2013.33049.

M. Baeva and D. Uhrlandt. Characterisation and application of direct current microarcs: a review. J. Phys. D: Appl. Phys., 58:263001, 2025. doi:10.1088/1361-6463/ade44d.

J. Swingler and A. Sumpton. Arc erosion of AgSnO2 contacts at different stages of a break operation. Rare metals, 29:248–254, 2010.

D. Gonzalez, R. Methling, S. Gortschakow, et al. Plasma of a dc hybrid-switch at beginning of contact separation. Proc. IEEE 67th Holm Conference on Electrical Contacts, Tampa, FL, USA, 29:1–6, 2022. doi:10.1109/HLM54538.2022.9969827.

X. Guo, F. Schilling, F. Berger, et al. Autonom gesteuerter Hybridschalter mit effizienter Wiederverfestigungsdetection (abschlussbericht). arXiv:https://www.tib.eu/de/suchen/id/TIBKAT:1925509745/Verbundvorhaben-AutoHybridS-Autonom-gesteuerter?cHash=2322cefc788feb0c66d1a33aa6672ae5.

M. Hu and B. R. Kusse. Experimental measurement of Ag vapor polarizability using optical interferometry and x-ray radiography. Phys. Rev. A, 66(6):062506, 2002. doi:10.1103/PhysRevA.66.062506.

T. Bräuer, S. Gortchakov, D. Loffhagen, et al. The temporal decay of the diffusion-determined afterglow plasma of the positive column. J. Phys. D: Appl. Phys., 30(23):3223–3239, 1997. doi:10.1088/0022-3727/30/23/007.

P. Porytsky, I. Krivtsun, V. Demchenko, et al. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method. Phys. Plasmas, 20(2):023504, 2013. doi:10.1063/1.4790661.

Y. P. Raiser. Gas Discharge Physics. Springer-Verlag Berlin, 1991.

M. Baeva. Electron collision cross-sections for Silver (private communication).

NIST. NIST Electron Elastic-Scattering Cross-Section Database. [2024-06-24]. doi:10.18434/T4NK50.

W. Lochte-Holtgreven. Plasma diagnostics. North-Holland publishing company, Amsterdam, 1968.

R. S. Freund, R. C. Wetzel, R. J. Shul, et al. Cross-section measurements for electron-impact ionization of atoms. Phys. Rev. A, 41(7):3575–3595, 1990. doi:10.1103/PhysRevA.41.3575.

D. Gupta, R. Naghma, and B. Antony. Electron impact total and ionization cross sections for Sr, Y, Ru, Pd, and Ag atoms. Can J. Phys., 91(9):744–750, 2013. doi:10.1139/cjp-2013-0174.

M. Baeva, R. Kozakov, S. Gorchakov, et al. Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci. Technol., 21(5):055027, 2012. doi:10.1088/0963-0252/21/5/055027.

M. B. Panish. Vapor Pressure of Silver. Chem. Eng. Data, 6:592–594, 1961.

Downloads

Published

2025-08-26

Issue

Section

Articles