Investigation of detecting DC series arcs with short gaps to simulate failure conditions in actual low-voltage DC facilities

Authors

  • M. Iwata Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • N. Nishiyama Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • Y. Yokomizu Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • N. Kodama Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • A. Nakamura Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • K. Ishikawa Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan
  • T. Sakai Nitto Kogyo Corporation, 2201 Kanihara, Nagakute, Aichi 480-1189, Japan
  • M. Tsukahara Nitto Kogyo Corporation, 2201 Kanihara, Nagakute, Aichi 480-1189, Japan
  • A. Miyamoto Nitto Kogyo Corporation, 2201 Kanihara, Nagakute, Aichi 480-1189, Japan

DOI:

https://doi.org/10.14311/ppt.2025.1.34

Keywords:

renewable energy, low-volage DC facility, short-gap arc, detection method of arc generation

Abstract

Direct current (DC) facilities are increasing with the spread of renewable energy such as photovoltaic power generation. DC series arc may occur in poor contact or disconnecting in the facilities and cause fire incidents. This paper presents DC series arc generation experiments in air considering actual failure conditions, and Wavelet transformation analysis of the measured current waveform. Using the obtained results, a method of detection of arc generation in low-voltage DC facilities is proposed.

References

M. Seeger, F. Macedo, U. Riechert, et al. Trends in high voltage switchgear research and technology. IEEJTransactions on Electrical and Electronic Engineering, 20:322–338, 2025. doi:10.1002/tee.24244.

Y. Kito, T. Sakuta, and A. Kamiya. Thomson scattering of laser light from a high pressure air arc discharge and its application to electron density measurement. J. Phys. D: Appl. Phys., 17:2283–2290, 1984. doi:10.1088/0022-3727/17/11/015.

H. Laukamp, G. Bopp, R. Grab, et al. PV fire hazard - analysis and assesment of fire incidents. In Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2013), pages 1–8, 2013. doi:10.4229/28thEUPVSEC2013-5BV.7.71.

M. C. Falvo and S. Capparella. Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Studies in Fire Safety, 3:1–16, 2015. doi:10.1016/j.csfs.2014.11.002.

K. M. Armijo, J. Johnson, R. K. Harrison, et al. Quantifying photovoltaic fire danger reduction with arc-fault circuit interrupters. Progress in Photovoltaics: Research and Applications, 24:507–516, 2016. doi:10.1002/pip.2561.

L. Fiorentinia, L. Marmob, E. Danzi, and V. Puccia. Fire risk assessment of photovoltaic plants. A case study moving from two large fires: from accident investigation and forensic engineering to fire risk assessment for reconstruction and permitting purposes. CHEMICAL ENGINEERING TRANSACTIONS, 48:427–432, 2016. doi:10.3303/CET1648072.

H.-P. Park, M. Kim, J.-H. Jung, and S. Chae. Arc fault detection method for PV systems employing differential power processing structure. IEEE Transactions on Power Electronics, 36(9):9787–9795, 2021. doi:10.1109/TPEL.2021.3061968.

N. Nishiyama, M. Iwata, Y. Yokomizu, et al. Wavelet analysis for detecting low-voltage DC short-gap arc under different voltage conditions.(in Japanese). In Proc. the 2024 Annual Meeting of the IEEJ, number 6-038, 2024.

N. Nishiyama, M. Iwata, Y. Yokomizu, et al. Fundamental study on low voltage DC series arc detection method -wavelet analysis of currents supposing faults in DC facilities.(in Japanese). In Proc. 2024 Annual Conference of Power and Energy Society of the IEEJ, number 238, 2024.

M. Iwata, N. Nishiyama, Y. Yokomizu, et al. A proposal for a detection method of short-gap arcs generated in low-voltage DC facilities. In Proc. IEEJ PES - IEEE PES Thailand Joint Symposium 2025, number TJS-25-007, 2025.

Y. Yokomizu, T. Matsumura, R. Henmi, and Y. Kito. Total voltage drops in electrode fall regions of argon and air arcs in current range from 10 to 20 000 A. J. Phys. D: Appl. Phys., 29:1260–1267, 1996. doi:10.1088/0022-3727/29/5/020.

P. S. Addison. Illustrated Wavelet Transformation Handbook, eds. S. Shin, K. Nakano. Asakura Publishing, 2005.

MathWorks. Morse Wavelet. [access: 2025/06/15]. arXiv:https://jp.mathworks.com/help/wavelet/ug/morse-wavelets.html.

J. M. Lilly and S. C. Olhede. Higher-order properties of analytic wavelets. IEEE Trans. on Signal Processing, 57(1):146–160, 2009. doi:10.1109/TSP.2008.2007607.

Downloads

Published

2025-08-26

Issue

Section

Articles