Modelling studies of arcs of short length between copper electrodes

Authors

  • M. Baeva Leibniz Institute for Plasma Science and Technology, Fellix-Hausdorff-Str. 2, 17489 Greifswald, Germany https://orcid.org/0000-0003-3305-2870
  • J. K. C. Ballentin Institute for Electrical Power Engineering, University of Rostock, 18051 Rostock, Germany
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology, Fellix-Hausdorff-Str. 2, 17489 Greifswald, Germany

DOI:

https://doi.org/10.14311/ppt.2025.1.40

Keywords:

modelling, DC short arcs, air-copper, atmospheric pressure

Abstract

In this work, we focus on the electrical properties of arcs of length of a few millimeters at a current level of 2 A. The computation is based on a unified non-equilibrium model that resolves the entire inter-electrode region, applies a deformed mesh to simulate the contact opening, and couples the heat transfer to the electrodes. The arcs are burning in atmospheric pressure air at the presence of Cu metal vapour. Experimental findings are used to calibrate the model.

References

M. J. Price and F. L. Jones. The electrical contact: the properties and rupture of the microscopic molten metal bridge. J Phys D: Appl Phys, 2(4):589, 1969. doi:10.1088/0022-3727/2/4/315.

C. Hollenstein and J.-L. Dorier. Micro-plasma formation during opening of a low current electrical contact. J Phys D: Appl Phys, 41(3), 2008. doi:10.1088/0022-3727/41/3/035207.

J. Sekikawa and T. Kubono. Voltage-current characteristics of breaking arc at constant opening speed in the air. IEEE Trans Compon Packag Technol, 27(1):167–171, 2004. doi:10.1109/TCAPT.2004.825754.

M. Baeva. Reversal of the electric field and the anode fall in DC arcs in air during contact opening. J Phys D: Appl Phys, 57(39):LT01, 2024. doi:10.1088/1361-6463/ad5c73.

M. Baeva and D. Uhrlandt. Modelling of microarcs in copper metal vapour dominated air. J Phys D: Appl Phys, 58(9):095204, 2025. doi:10.1088/1361-6463/ad9f79.

R. N. Gupta, J. M. Yos, A. A. Thompson, and G.-P. Lee. NASA Reference Publication. 1990.

L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov. Kinetics of impact-radiation ionization and recombination. Sov Phys Uspekhi, 15:375–394, 1973. doi:10.1070/PU1973v015n04ABEH004987.

M. Baeva. Application of the transferred matrix method to a unified evaluation of the cathodic electron emission. AIP Adv, 8:085322, 2018. doi:10.1063/1.5041314.

M. J. Zehe, S. Gordon, and B. J. McBride. NASA TP-2001-210959. Glenn Research Center, 2001.

A. Gleizes, Y. Cressault, and P. Teulet. Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapours. Plasma Sources Sci Technol, 19:055013, 2010. doi:10.1088/0963-0252/19/5/055013.

J. K. C. Ballentin, M. Baeva, and D. Uhrlandt. Experimental studies of microarcs between copper electrodes in atmospheric pressure air. Plasma Phys Technol, 12(2):95, 2025. doi:10.14311/ppt.2025.2.95.

M. Baeva, J. K. C. Ballentin, and D. Uhrlandt. Modelling studies of arcs of short length between copper electrodes - dataset, 2025. doi:10.34711/INPTDAT.942.

Downloads

Published

2025-08-26

Issue

Section

Articles