Modelling of microdischarges in metal vapour of cadmium in comparison with electrical measurements

Authors

  • M. Baeva Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany https://orcid.org/0000-0003-3305-2870
  • A. P. Jovanović Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany https://orcid.org/0000-0002-7104-6466
  • R. Methling Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany https://orcid.org/0000-0002-9485-6277
  • D. Bratek Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
  • N. Schüler Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
  • C. Uber Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
  • D. Uhrlandt Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany https://orcid.org/0000-0001-6534-147X

DOI:

https://doi.org/10.14311/ppt.2025.2.112

Keywords:

microdischarge, fluid model, cadmium, safety assessment

Abstract

Microdischarges in cadmium vapour occur in a testing equipment for safety assessment of electric devices for explosion protection. In this work, a unified non-equilibrium model is employed to obtain the plasma properties for a current of 60 mA and gap lengths from 20 up to 160 µm corresponding to conducted experiments. The predicted voltage as a function of the discharge length agrees well with the measured values. The model provides the heat generation relevant to the ignition of a gas mixture.

References

C. Uber, M. Hilbert, A. Felgner, et al. Electrical discharges caused by opening contacts in an ignitable atmosphere – part I: Analysis of electrical parameters at ignition limits. J. Loss Prev. Proc. Ind., 61:114–121, 2019. doi:10.1016/j.jlp.2019.06.011.

C. Uber, T. Runge, J. Brunzendorf, et al. Electrical discharges caused by opening contacts in an ignitable atmosphere – part II: Spectroscopic investigation and estimation of temperatures. J. Loss Prev. Proc. Ind., 61, 2019. doi:10.1016/j.jlp.2019.05.010.

R. Methling, S. Franke, C. Uber, et al. Optical emission spectroscopy of cadmium dominated discharges applied for assessment of explosion protection. Plasma Phys. Technol., 10(1):47–51, 2023. doi:10.14311/ppt.2023.1.47.

R. Shekhar, S. Gortschakow, H. Grosshans, et al. Numerical investigation of transient, low-power metal vapour discharges occurring in near limit ignitions of flammable gas. 52(4):045202, 2019. doi:10.1088/1361-6463/aaed04.

M. J. Kushner. Modelling of microdischarge devices: plasma and gas dynamics. J Phys D: Appl Phys, 38(11):1633–1643, 2005. doi:10.1088/0022-3727/38/11/001.

M. Baeva and D. Uhrlandt. Modelling of microarcs in copper metal vapour dominated air. J. Phys. D: Appl. Phys., 58(9):095204, 2024. doi:10.1088/1361-6463/ad9f79.

L. M. Biberman, V. S. Vorob’ev, , and I. T. Yakubov. Kinetics of impact-radiation ionization and recombination. Sov. Phys. Usp., 15(4):375–394, 1973. doi:10.1070/PU1973v015n04ABEH004987.

M. Baeva. Application of the transferred matrix method to a unified evaluation of the cathodic electron emission. AIP Adv., 8(8):085322, 2018. doi:doi:10.1063/1.5041314.

P. G. Slade. The vacuum interrupter: Theory, design, and application. CRC Press, 2008.

B. J. McBride, M. J. Zehe, , and S. Gordon. NASA Glenn coefficients for calculating thermodynamic properties of individual species, NASA/TP-2002-211556. Technical report, NASA, Glenn Research Center, 2002.

S. Stølen and F. Gronvøld. Heat capacity of solid cadmium from 298.15 to 594.22 K and of liquid cadmium from 594.22 to 700 K: enthalpy of fusion. 391:169–174, 2002.

F. P. Incropera, D. P. DeWitt, T. L. Bergmann, and A. S. Lavine. Fundamentals of heat and mass transfer. Wiley, New York, USA, 2007.

R. Honig. Rb-104: Vapor pressure data for the more common elements. Technical report, Radio corporation of America, RCA Laboratories, 1957.

B. P. Marinkovic, R. P. McEachran, D. V. Fursa, et al. Cross sections for electron scattering from Cadmium: Theory and experiment. J. Phys. Chem. Ref. Data, 52:023102, 2023.

Y. Raizer. Gas Discharge Physics. Springer, Berlin, 1991.

M. Baeva, A. P. Jovanović, R. Methling, et al. Modelling microdischarges in metal vapour of cadmium - Dataset, 2025. doi:10.34711/INPTDAT.943.

Downloads

Published

2025-09-10

Issue

Section

Articles