Medium voltage direct current interruption by a high velocity flow of dielectric liquids
DOI:
https://doi.org/10.14311/ppt.2025.2.130Keywords:
mvdc interruption, dc switching arc in liquids, current limitingAbstract
The increasing availability of self-sufficient MVDC systems necessitates innovative MVDC switching solutions. Direct current interruption is achieved by inducing a current zero and preventing re-ignition. In addition to complex resonant networks that create oscillating currents with natural current zeros, another method uses a switching device that generates an arc voltage higher than the grid voltage for current limiting. Conventional gas or vacuum interrupters fail at higher voltages. This paper builds upon previous investigations on the contact separation in dielectric liquids for MVDC interruption. A low inertia mass contact mechanism is used and measurements are carried out for 50 A to 250 A direct current interruption at 10 kV. The study investigates the switching performance of synthetic ester and synthetic oil.
References
WG C6.31. Medium voltage direct current (MVDC) grid feasibility study. Technical report, Cigré, 2020.
C. Meyer, M. Kowal, and R. W. De Doncker. Circuit breaker concepts for future high-power DC-applications. In Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, volume 2, pages 860–866, 2005. doi:10.1109/IAS.2005.1518439.
C. W. Brice, R. A. Dougal, and J. L. Hudgins. Review of technologies for current-limiting low-voltage circuit breakers. IEEE Transactions on Industry Applications, 32(5):1005–1010. doi:10.1109/28.536858.
M. Lindmayer and Z. Huang. Current limiting switching by squeezing arcs into narrow insulating slots. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(2):160–165, April 1992. doi:10.1109/33.142889.
P. Hettwer. Arc-interruption and gas-evolution characteristics of common polymeric materials. IEEE Transactions on Power Apparatus and Systems, PAS-101(6):1689–1696, June 1982. doi:10.1109/tpas.1982.317220.
C. Fievet, M. Barrault, P. Chevrier, and P. Petit. Experimental and numerical studies of arc restrikes in low-voltage circuit breakers. IEEE Transactions on Plasma Science, 25(5):954–960, 1997. doi:10.1109/27.649604.
R. Ma, M. Rong, F. Yang, et al. Investigation on arc behavior during arc motion in air dc circuit breaker. IEEE Transactions on Plasma Science, 41(9):2551–2560, September 2013. doi:10.1109/tps.2013.2273832.
H. Gerdien and A. Lotz. Über eine lichtquelle von sehr hoher flächenhelligkeit. In Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, volume 2, pages 489–496. Julius Springer, 1922.
H. Ann. Untersuchungen über die Erzeugung sehr hoher Lichtbogenspannungen unter Flüssigkeiten. PhD thesis, TH Braunschweig, 1966.
K. Möllenhoff. Untersuchungen zur Entwicklung eines Lichtbogen-Ölströmungsschalters für die Hochspannungs-Gleichstrom-Übertragung. PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig, 1968.
S. Jugelt and C. Leu. Interruption of medium-voltage direct-currents by seperation of contact elements in mineral oil using an ultra fast electro-magnetic actuator. Plasma Physics and Technology, 6(1):73–77, 2019. doi:10.14311/ppt.2019.1.73.
S. Jugelt and Y. Geng. Influence of liquid flow velocity on the breakdown characteristics of dielectric fluids in quenching gaps. In 21st International Conference on Dielectric Liquids (ICDL), Sevilla, Spain, 2022. IEEE. ISBN 978-1-6654-8491-6. doi:10.1109/icdl49583.2022.9830927.
J. Rumble. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press/Taylor & Francis Group.
J. Muslim. Study of dielectric liquids as alternative encapsulant for high temperature electronics power modules applications. PhD thesis, Université Grenoble Alpes, 2019.
S. Gordon and B. J. McBride. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis.
C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. PhD thesis, Technische Universität Ilmenau, 2009.
C. Drebenstedt, S. Jugelt, and M. Rock. Test circuit for evaluation of physical characteristics of SPDs with combined DC and impulse load. In 36th International Conference on Lightning Protection (ICLP), pages 608–613, Cape Town, South Africa, October 2022. IEEE. doi:10.1109/ICLP56858.2022.9942507.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 S. Jugelt, C. Leu

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).