Numerical modeling of electric arc in a low voltage breaking chamber
DOI:
https://doi.org/10.14311/ppt.2025.3.190Keywords:
low-voltage circuit breaker, electric arc model, air plasma, simulationAbstract
This work presents the development of a MagnetoHydroDynamic (MHD) model to simulate electric arc behavior in a low-voltage circuit breaker chamber. The modeling process began with a simplified geometry to validate key phenomena such as arc displacement, segmentation, and voltage rise, showing good agreement with literature. To approach realistic conditions, contact rotation was implemented using a layering technique, improving numerical accuracy and avoiding mesh deformation.
A current-limiting mechanism and electrical network coupling were also introduced, enabling dynamic current input. These modules were integrated into a 3D geometry representing a real chamber, successfully reproducing arc evolution under realistic conditions. The model captures complex arc physics and helps in future design optimization of low-voltage devices.
References
J Quéméneur. Etude des forces à l’origine du déplacement d’un arc électrique dans un disjoncteur basse-tension. PhD thesis, 2016. Publication Title: Thèse.
X. Li, D. Chen, R. Dai, and Y. Geng. Study of the influence of arc ignition position on arc motion in low-voltage circuit breaker. IEEE Transactions on Plasma Science, 35(2 III):491–497, April 2007. doi:10.1109/TPS.2007.892579.
J. Lu, J.-J. Gonzalez, P. Freton, et al. Experimental Studies of Arc Motion Between Two Parallel Runners with Splitter Plates. Plasma Physics and Technology, 7(1):16–20, June 2020. doi:10.14311/ppt.2020.1.16.
Mingzhe Rong, Yi Wu, Fei Yang, et al. Numerical research on switching arc of circuit breaker. In 2011 1st International Conference on Electric Power Equipment - Switching Technology, pages 488–491, Xi’an, China, October 2011. IEEE. ISBN 978-1-4577-1272-2 978-1-4577-1273-9 978-1-4577-1271-5. URL: http://ieeexplore.ieee.org/document/6123036/, doi:10.1109/ICEPE-ST.2011.6123036.
M. Lindmayer, E. Marzahn, A. Mutzke, et al. The process of arc splitting between metal plates in low voltage arc chutes. IEEE Transactions on Components and Packaging Technologies, 29(2):310–317, June 2006. doi:10.1109/TCAPT.2006.875902.
A. Mutzke, T. Rüther, M. Lindmayer, and M. Kurrat. Arc behavior in low-voltage arc chambers. EPJ Applied Physics, 49(2), January 2010. doi:10.1051/epjap/2010001.
Jingjing Lu. Caractérisation du comportement du plasma dans un disjoncteur basse tension par le développement d’un outil numérique et d’expériences associées. PhD thesis, 2020. Publication Title: Thèse.
J. Yin, Q. Wang, and X. Li. Simulation analysis of arc evolution process in multiple parallel contact systems. IEEE Transactions on Plasma Science, 46(8):2788–2793, 2018. doi:10.1109/TPS.2018.2828330.
ANSYS. Ansys Fluent Customization Manual. Technical report, 2021. URL: http://www.ansys.com.
Maëva COURREGE. Caractérisation des interactions plasma/parois dans un disjoncteur haute tension. PhD thesis, 2017.
F. Karetta and M. Lindmayer. Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs. IEEE, 1996.
P. Freton, J. J. Gonzalez, M. Masquère, and F. Reichert. Magnetic field approaches in dc thermal plasma modelling. Journal of Physics D: Applied Physics, 44(34), August 2011. doi:10.1088/0022-3727/44/34/345202.
Vacquié Serge. L’arc électrique. 2000.
F. Yang, M. Rong, Y. Wu, et al. Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker. Journal of Physics D: Applied Physics, 43(43), November 2010. doi:10.1088/0022-3727/43/43/434011.
A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modelling. Journal of Physics D: Applied Physics, 38(9), May 2005. doi:10.1088/0022-3727/38/9/R01.
L. Xingwen, C. E. Degui Li Zhipeng, and W. Qian. Simulation of the Effects of Several Factors on Arc Plasma Behavior in Low Voltage Circuit Breaker Simulation of the Effects of Several Factors on Arc Plasma Behavior in Low Voltage Circuit Breaker*. Technical report, 2005. Publication Title: Plasma Science and Technology Plasma Science & Technology Issue: 5 ISBN: 130.120.97.16.
M. Rong, Y. Wu, Q. Yang, et al. Simulation on arc movement under effects of quenching chamber configuration and magnetic field for low-voltage circuit breaker. IEICE transactions on electronics, 88(8):1577–1583, 2005. Publisher: The Institute of Electronics, Information and Communication Engineers.
Y. Qian, R. Mingzhe, A. B. Murphy, and W. Yi. The influence of medium on low-voltage circuit breaker arcs. Plasma Science and Technology, 8(6):680, 2006. Publisher: IOP Publishing.
Y. Naghizadeh-Kashani, Y. Cressault, and A. Gleizes. Net emission coefficient of air thermal plasmas. Technical report, 2002. Publication Title: J. Phys. D: Appl. Phys Volume: 35.
F. Reichert, J. J. Gonzalez, and P. Freton. Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. Journal of Physics D: Applied Physics, 45(37), September 2012. doi:10.1088/0022-3727/45/37/375201.
J. J. Lowke and M. Tanaka. ’LTE-diffusion approximation’ for arc calculations. Journal of Physics D: Applied Physics, 39(16):3634–3643, August 2006. doi:10.1088/0022-3727/39/16/017.
M. S. Benilovt and A. Marottaf. A model of the cathode region of atmospheric pressure arcs. Technical report, 1995. Publication Title: J. Phys. D: Appl. Phys Volume: 28. URL: http://iopscience.iop.org/0022-3727/28/9/015.
Z. Sun, M. Rong, F. Yang, et al. Numerical modeling of arc splitting process with ferromagnetic plate. IEEE Transactions on Plasma Science, 36(4 PART 1):1072–1073, August 2008. doi:10.1109/TPS.2004.924559.
F. Yang, M. Rong, Y. Wu, et al. Numerical analysis of arc characteristics of splitting process considering ferromagnetic plate in low-voltage arc chamber. IEEE Transactions on Plasma Science, 38(11 PART 2):3219–3225, November 2010. doi:10.1109/TPS.2010.2070084.
M. Rong, F. Yang, Y. Wu, et al. Simulation of arc characteristics in miniature circuit breaker. IEEE Transactions on Plasma Science, 38(9 PART 1):2306–2311, September 2010. doi:10.1109/TPS.2010.2050703.
T. Rüther, A. Mutzke, M. Lindmayer, and M. Kurrat. The formation of arc roots on a metallic splitter plate in low-voltage arc chambers. In 23rd International Conference on Electrical Contacts, ICEC 2006 - together with the 6th International Session on Electromechanical Devices, IS-EMD 2006, 2006.
A. Erk and M. Schmelzle. Grundlagen der Schaltgerätetechnik: Kontaktglieder und Löscheinrichtungen elektrischer Schaltgeräte der Energietechnik. Springer, 1974.
G. Hertz and R. Rompe. Einführung in die Plasmaphysik und ihre technische Anwendung. Walter de Gruyter GmbH & Co KG, 1968.
M. Lindmayer, E. Vinaricky, F. Berger, et al. Schaltgeräte, elektromechanische bauelemente und sicherungen. In Elektrische Kontakte, Werkstoffe und Anwendungen: Grundlagen, Technologien, Prüfverfahren, pages 603–814. Springer, 2016.
A. Mutzke, T. Rtither, M. Kurrat, et al. Modeling the Arc Splitting Process in Low-Voltage Arc Chutes. Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, 2007.
J. Quéméneur, J. Lu, J.-J. Gonzalez, et al. Arc motion in low voltage circuit breaker (LVCB) experimental and theoretical approaches. 8(2):35–45, 2019. doi:10.5923/j.scit.20180802.02.
A. Iturregi, B. Barbu, E. Torres, et al. Electric Arc in Low-Voltage Circuit Breakers: Experiments and Simulation. IEEE Transactions on Plasma Science, 45(1):113–120, January 2017. Publisher: Institute of Electrical and Electronics Engineers Inc. doi:10.1109/TPS.2016.2633400.
A. Iturregi Aio. Modelization and analysis of the electric arc in low voltage circuit breakers. 2013.
A. Gatri, J.-J. Gonzalez, P. Freton, and P. Joyeux. Limitation de courant dans une chambre de coupure à basse tension. Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l’Environnement, 9(1), 2025.
Y. Liu, D. Chen, H. Yuan, et al. Research of dynamic optimization for the cam design structure of mccb. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(3):390–399, 2016.
D. Shin, J. W. McBride, and I. O. Golosnoy. Arc modeling to predict arc extinction in low-voltage switching devices. In 2018 IEEE Holm Conference on Electrical Contacts, pages 222–228. IEEE, 2018.
F. Yang, R. Ma, Y. Wu, et al. Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker. Plasma Science and Technology, 14(2):167, 2012. doi:10.1088/1009-0630/14/2/16.
J. Almurr, W. Bussière, J. Hertzog, and D. Rochette. Numerical investigations on the electric arc behavior upon contact opening in a low-voltage switch under the effect of external magnetic field. Electric Power Systems Research, 209:107945, 2022. doi:10.1016/j.epsr.2022.107945.
M. Rong, Q. Ma, Y. Wu, et al. The influence of electrode erosion on the air arc in a low-voltage circuit breaker. Journal of Applied Physics, 106(2), 2009. doi:10.1063/1.3176983.
Y. Wu, M. Rong, Z. Sun, et al. Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device. Journal of Physics D: Applied Physics, 40(3):795, 2007. doi:10.1088/0022-3727/40/3/016.
Y. Wu, M. Rong, F. Yang, et al. Numerical modeling of arc root transfer during contact opening in a low-voltage air circuit breaker. IEEE transactions on plasma science, 36(4):1074–1075, 2008. doi:10.1109/TPS.2008.924634.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 A. Gatri, J.-J. Gonzalez, P. Freton, P. Joyeux, F. Sambou

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).