Free burning arc black-box modeling in CO2/O2

Authors

DOI:

https://doi.org/10.14311/ppt.2025.2.136

Keywords:

black-box arc models, SF6-alternatives, switching arcs, arc discharge, CO2/O2-mixtures

Abstract

Black-box arc parameters were fitted from free-burning arc experiments in a 3 bar abs. CO2/O2 (90%/10%) mixture for the first time. Best fits were achieved with a novel Cassie-based model for low-current arcs. Averaged arc time parameters were τ ≈ 170 µs at low currents (20–50 A) and τ ≈ 33 µs at high currents (1–3 kA), respectively. A decrease of τ could be observed for elongated arcs. Explanations based on thermodynamic arc properties are consistent with measured variations of τ .

References

CIGRÉ WG A3.41. "Current Interruption in SF6-free Switchgear". CIGRÉ Technical Brochure no. 871, 2022.

T. Uchii, Y. Hoshina, T. Mori, et al. "Investigations on SF6-Free Gas Circuit Breaker Adopting CO2 Gas as an Alternative Arc-Quenching and Insulating Medium". In L. G. Christophorou, J. K. Olthoff, and P. Vassiliou, editors, Gaseous Dielectrics X, pages 205–210. Springer

US, Boston, MA, USA, 2004. ISBN 978-1-4419-8979-6. doi:10.1007/978-1-4419-8979-6_28.

CIGRÉ WG 13.01. "State of the art of circuit-breaker modelling". CIGRÉ Technical Brochure no. 135, 1998.

K. Mochizuki, T. Ueno, H. Mizoguchi, et al. "Evaluation of Interruption Capability on Various Gases". In L. G. Christophorou, J. K. Olthoff, and P. Vassiliou, editors, Gaseous Dielectrics X, pages 265–270. Springer US, Boston, MA, USA, 2004. ISBN 978-1-4419-8979-6. doi:10.1007/978-1-4419-8979-6_37.

T. Matsumura, I. Morooka, Y. Yokomizu, and M. Suzuki. "Arc Parameters in CO2-blast quenching chamber with high-pressure storage tank of different pressures". Vacuum, 80(11-12):1305–1310, Sept. 2006. doi:10.1016/j.vacuum.2006.01.034.

S. Nishiwaki, T. Koshizuka, T. Uchii, and H. Kawano. "Discussions on Post Arc Current of a CO2 Circuit Breaker". In 2008 17th Int. Conf. Gas Discharges Their Appl., pages 125–128, 2008. ISBN 978-0-9558052-0-2.

K. Udagawa, T. Koshizuka, T. Uchii, et al. "CO2 Circuit Breaker Arc Model for EMTP Simulation of SLF Interrupting Performance". In Int. Conf. Power Syst. Transients (IPST2011), Delft, Netherlands, 2011. 11IPST037.

Z. Guo, S. Liu, Y. Pu, et al. "Study of the Arc Interruption Performance of CO2 Gas in High-Voltage Circuit Breaker". IEEE Trans. Plasma Sci., 47(5):2742–2751, May 2019. doi:10.1109/TPS.2019.2904981.

K. H. Yoon and H. E. Spindle. "A Study of the Dynamic Response of Arcs in Various Gases". Trans. Amer. Inst. Elect. Engineers. Part III: Power App. Syst., 77(3):1634–1640, Apr. 1958. doi:10.1109/AIEEPAS.1958.4500218.

P. Pietrzak, J. T. Engelbrecht, P. Simka, et al. "Voltage-Current Characteristic of Free Burning Arcs in SF6 Alternative Gas Mixtures". IEEE Trans. Plasma Sci., 50(11):4744–4752, Nov. 2022.doi:10.1109/TPS.2022.3210995.

H. Janssen, P. Devaud, T. Wei, and C. M. Franck. "A flexible pulsed current source to characterise future switching technologies". In 23rd Int. Symp. High Voltage Eng. (ISH 2023), volume 2023, pages 554–560, 2023. doi:10.1049/icp.2024.0579.

M. Walter and C. Franck. "Improved Method for Direct Black-Box Arc Parameter Determination and Model Validation". IEEE Trans. Power Del., 29(2):580–588, Apr. 2014. doi:10.1109/TPWRD.2013.2283278.

A. M. Cassie. "Arc Rupture and Circuit Severity: A New Theory". In Conf. Int. Grands Réseaux Életriques Haute Tension, Paris, FR, Jun./Jul. 1939.

O. Mayr. "Beiträge zur Theorie des statischen und des dynamischen Lichtbogens". ETZ-A, 37(12):588–608, Dec. 1943. doi:10.1007/BF02084317.

J. Schwarz. "Dynamisches Verhalten eines gasbeblasenen, turbulenzbestimmten Schaltlichtbogens". ETZ-A, 92(3):389–391, 1971.

Y. Yokomizu, T. Matsumura, R. Henmi, and Y. Kito. "Total voltage drops in electrode fall regions of SF6, argon and air arcs in current range from 10 to 20 000 A". J. Phys. D: Appl. Phys., 29(5):1260–1267, May 1996. doi:10.1088/0022-3727/29/5/020.

J. T. Engelbrecht, P. Pietrzak, and C. M. Franck. "Cu/W Electrode Ablation and Its Influence on Free-Burning Arcs in SF6 Alternatives". IEEE Trans. Plasma Sci., 50(10):3715–3724, Oct. 2022. doi:10.1109/TPS.2022.3203007.

T. Christen and N. Ranjan. "Generalized Mayr Model for Arcs in MV Switches With Splitter Plates". IEEE Trans. on Power Del., 37(1):359–364, Feb 2022. doi:10.1109/TPWRD.2021.3060145.

M. Becerra, J. Nilsson, S. Franke, et al. "Spectral and electric diagnostics of low-current arc plasmas in CO2 with N2 and H2O admixtures". J. Phys. D: Appl. Phys., 57(1), 2024. doi:10.1088/1361-6463/ACFCC6.

T. Billoux, V. Boretskij, Y. Cressault, et al. "Emission spectrum of the electric arc discharge in CO2 between copper electrodes". In 21st Int. Symp. Plasma Chemistry (ISPC 21), Cairns, AUS, 2013.

Y. Yokomizu, R. Ochiai, and T. Matsumura. "Electrical and thermal conductivities of high-temperature CO2-CF3I mixture and transient

conductance of residual arc during its extinction process". J. Phys. D: Appl. Phys., 42(21), 2009. doi:10.1088/0022-3727/42/21/215204.

L. Zhong, J. Wang, J. Xu, et al. "Effects of Buffer Gases on Plasma Properties and Arc Decaying Characteristics of C4F7N–N2 and C4F7N–CO2 Arc Plasmas". Plasma Chemistry Plasma Process., 39(6):1379–1396, 2019. doi:10.1007/S11090-019-10015-8.

M. Seeger. "Environmentally friendly high-voltage AC switching technology: gas circuit breakers with SF6 alternative gases". In K. Niayesh, editor, Green HV Switching Technologies for Modern Power Networks, pages 227–312. IET, London, UK, 2023. doi:10.1049/PBPO236E_ch4.

Downloads

Published

2025-09-10

Issue

Section

Articles