Magnetohydrodynamic modeling of direct current arc interruption in a low-voltage switch
DOI:
https://doi.org/10.14311/ppt.2025.3.176Keywords:
direct current arcs, computational magnetohydrodynamics, arc interruption modeling, low voltage switch, DC connectorAbstract
This paper proposes a magnetohydrodynamic arc model for direct current arc interruption simulation in a low-voltage switch with a contact bridge design. Arc voltage and current for the interruption of an initial current and voltage in the 800 V and 800 A range are compared and differences discussed between the simulation and an experiment. The arc is successfully quenched in the simulation, but discrepancies between simulation and experiment may be attributable to erosion modeling.
References
C. Jung. Power up with 800-V systems: The benefits of upgrading voltage power for battery-electric passenger vehicles. IEEE Electrification Magazine, 5:53–58, 2017. doi:10.1109/MELE.2016.2644560.
M. Lindmayer, editor. Schaltgeräte: Grundlagen, Aufbau, Wirkungsweise. Springer Berlin Heidelberg, 1987.
A. Gleizes, J. J. Gonzalez, and P. Freton. Thermal plasma modelling. Journal of Physics D: Applied Physics, 38:R153–R183, 2005. doi:10.1088/0022-3727/38/9/R01.
K. Niayesh and M. Runde. Power Switching Components. Springer International Publishing, 2017.
T. Schrank, E.-D. Wilkening, M. Kurrat, et al. Breaking performance of a circuit breaker influenced by a permanent magnetic field at dc voltages up to 450 V. In 26th International Conference on Electrical Contacts (ICEC 2012), pages 35–40, 2012. doi:10.1049/cp.2012.0618.
H. Köpf. Schalten von Gleichströmen in automobilen HV-Bordnetzen bis 500 V, unter Berücksichtigung der Lichtbogenwanderung im Doppelkontaktsystem. PhD thesis, Technische Universität Braunschweig, 2018.
X. Liu, X. Huang, and Q. Cao. Simulation and experimental analysis of dc arc characteristics in different gas conditions. IEEE Transactions on Plasma Science, 49:1062–1071, 2021. doi:10.1109/TPS.2021.3054657.
C. Rümpler. Lichtbogensimulation für Niederspannungsschaltgeräte. PhD thesis, Technische Universität Ilmenau, 2009.
F. Reichert. Numerische Simulation strömungsmechanischer Vorgänge in SF6-Hochspannungsleistungsschaltern. habilitation, Technische Universität Ilmenau, 2015.
R. Fuchs. Numerical Modeling and Simulation of Electric Arcs. PhD thesis, ETH Zürich, 2021. doi:10.3929/ethz-b-000489867.
S. Gortschakow, D. Gonzalez, S. Yu, and F. Werner. 3d analysis of low-voltage gas-filled dc switch using simplified arc model. Plasma Physics and Technology, pages 65–68, 2019. doi:10.14311/ppt.2019.1.65.
R. Fuchs and P. Kloc. Numerical simulation of dc-contactor in hydrogen-nitrogen gas capsule. In 23rd International Conference on Gas Discharges and their Applications, pages 112–115, 2023.
R. Chechare, C. Rümpler, A. Mujawar, and K. Bednarski. Model-based optimization of the switching performance of a switch disconnector. Plasma Physics and Technology, 10:40–46, 2023. doi:10.14311/ppt.2023.1.40.
P. Kloc, V. Aubrecht, M. Bartlova, and R. Fuchs. Comparison of mean absorption methods for radiation transfer models in air plasma at various pressures. Plasma Chemistry and Plasma Processing, 43:429–447, 2023. doi:10.1007/s11090-022-10304-9.
S. Kimpeler, F. Mingers, V. West, et al. Influence of polyamide 6.6 ablation on direct current arcs – experiment and simulation: Unpublished journal article, 2025.
C. Rümpler, H. Stammberger, and A. Zacharias. Low-voltage arc simulation with out-gassing polymers. In 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm), pages 1–8, 2011. doi:10.1109/HOLM.2011.6034770.
M. I. Boulos, P. L. Fauchais, and E. Pfender, editors. Springer International Publishing and Imprint Springer, 1st ed. 2023 edition edition, 2023. doi:10.1007/978-3-030-84936-8.
E. Vinaricky, K.-H. Schröder, and J. Weiser, editors. Elektrische Kontakte, Werkstoffe und Anwendungen. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. doi:10.1007/978-3-642-45427-1.
Y. Cressault, S. Kimpeler, A. Moser, and P. Teulet. Thermophysical properties of air-pa66-copper plasmas for low-voltage direct current switches. Plasma Physics and Technology, 10:52–55, 2023. doi:10.14311/ppt.2023.1.52.
P. Kloc, V. Aubrecht, and M. Bartlova. Numerically optimized band boundaries of planck mean absorption coefficients in air plasma. Journal of Physics D: Applied Physics, 50:305201, 2017. doi:10.1088/1361-6463/aa7627.
D. Gonzalez, S. Gortschakow, S. Yu, and F. Werner. Investigation of the arc characteristics of switching dc arcs on hydrogen containing gas mixtures. Plasma Physics and Technology, 6:69–72, 2019. doi:10.14311/ppt.2019.1.69.
D. Gonzalez, S. Gortschakow, R. Methling, et al. Switching behavior of a gas-filled model dc-contactor under different conditions. IEEE Transactions on Plasma Science, 48:2515–2522, 2020. doi:10.1109/TPS.2020.3003525.
C. B. Ruchti and L. Niemeyer. Ablation controlled arcs. IEEE Transactions on Plasma Science, 14:423–434, 1986. doi:10.1109/TPS.1986.4316570.
P. G. Slade, editor. CRC Press Taylor & Francis Group, Boca Raton and London and New York, second edition, first issued in paperback edition edition, 2017.
E. Jonsson, M. Runde, G. Dominguez, et al. Comparative study of arc-quenching capabilities of different ablation materials. IEEE Transactions on Power Delivery, 28:2065–2070, 2013. doi:10.1109/TPWRD.2012.2227834.
H. Taxt, K. Niayesh, and M. Runde. Medium-voltage load current interruption in the presence of ablating polymer material. IEEE Transactions on Power Delivery, 33:2535–2540, 2018. doi:10.1109/TPWRD.2018.2803165.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 S. Kimpeler, F. Mingers, V. West, D. Fuhrmann, A. Tönnesmann, W. Leterme

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).