Influence of radiation energy losses in a numerical simulation of subsonic vacuum arc in the presence of an axial magnetic field
DOI:
https://doi.org/10.14311/ppt.2025.3.208Keywords:
electric arc, vacuum, simulation, AMF, radiationAbstract
We present a three-dimensional (3D) Magneto Hydrodynamic Model (MHD) at two temperatures (electronic and ionic) of inter-electrodes plasma, simulated with Ansys Fluent coupled with specific developments in C language. The stationary model describes a subsonic arc in vacuum at 15 kA between copper contacts, submitted to an Axial Magnetic Field (AMF). Due to high temperatures, losses by radiation need to be considered. Even if departures from Local Thermal Equilibrium (LTE) exist, currently due to lack of appropriate data, net emission coefficient data calculated under LTE are used and attributed exclusively to electron energy equation. Two cases are investigated in this study, with or without considering the radiation in the electrons energy equation. The study highlights the importance of better characterizing radiative losses in order to improve the reliability of numerical models.
References
R. L. Boxman, S. Goldsmith, and A. Greenwood. Twenty-five years of progress in vacuum arc research and utilization. IEEE Transactions on plasma science, 25(6):1174–1186, 1997. doi:10.1109/27.650894.
P. Picot. Cahier technique n° 198 La coupure du courant électrique dans le vide. 2000. URL: http://www.schneider-electric.com.
L. Wang, L. Wang, S. Jia, et al. Experimental study of anode activities in high current vacuum arc subjected to axial magnetic fields under different conditions. IEEE Transactions on Plasma Science, 38(7):1682–1691, 2010. doi:10.1109/TPS.2010.2049666.
E. Schade and D. L. Shmelev. Numerical simulation of high-current vacuum arcs with an external axial magnetic field. IEEE Transactions on Plasma Science, 31(5):890–901, 2003. doi:10.1109/TPS.2003.818436.
S. Giere, T. Heinz, A. Lawall, et al. Control of diffuse vacuum arc using axial magnetic fields in commercial high voltage switchgear. Plasma Physics and Technology, 6(1):19–22, 2019. doi:10.14311/ppt.2019.1.19.
Y. Langlois, P. Chapelle, A. Jardy, and F. Gentils. On the numerical simulation of the diffuse arc in a vacuum interrupter. Journal of Applied Physics, 109(11), 2011. doi:10.1063/1.3587180.
B. Tezenas Du Montcel, P. Chapelle, C. Creusot, and A. Jardy. Numerical study of the current constriction in a vacuum arc at large contact gap. IEEE Transactions on Plasma Science, 47(5):2765–2774, 2019. Publisher: Institute of Electrical and Electronics Engineers Inc. doi:10.1109/TPS.2019.2909964.
L. Wang, S. Jia, Z. Shi, and M. Rong. Numerical simulation of vacuum arc under different axial magnetic fields. Journal of Physics D: Applied Physics, 38(7):1034–1041, 2005. doi:10.1088/0022-3727/38/7/011.
ANSYS. Ansys Fluent Theory Guide Release 2023 R2. 2023.
H. Wang, L. Wang, Q. Ma, et al. Experimental investigation of vacuum arc characteristics subject to axial magnetic field contacts with different ratios of diameter to gap distance. Physics of Plasmas, 29(11), 2022. Publisher: American Institute of Physics Inc. doi:10.1063/5.0108725.
S. I. Braginskii. Transport processes in a plasma. 1965.
J. Kutzner and H. C. Miller. Ion flux from the cathode region of a vacuum arc, 1989, ieee transactions on plasma science. IEEE Transactions on Plasma Science, 17(5):688–694, 1989. doi:10.1109/27.41183.
J. Kutzner and H. C. Miller. Integrated ion flux emitted from the cathode spot region of a diffuse vacuum arc. Journal of Physics D: Applied Physics, 25(4):686, apr 1992. doi:10.1088/0022-3727/25/4/015.
Y. L. Langlois. Modélisation de l’arc électrique dans un disjoncteur à vide. Theses, Institut National Polytechnique de Lorraine, November 2010. URL: https://hal.univ-lorraine.fr/tel-01748841.
C. W. Kimblin. Erosion and ionization in the cathode spot region of vacuum arcs. J. Appl. Phys, 44(7):3074–3080, 1973.
J. E. Daalder. Components of cathode erosion in vacuum arcs. Journal of Physics D: Applied Physics, 9(16):2379–2395, 1976. doi:10.1088/0022-3727/9/16/009.
C. Simonnet, P. Freton, J.-J. Gonzalez, et al. Influence de la variation de la charge moyenne dans une simulation numérique d’un arc sous vide en présence d’un AMF. Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l’Environnement, 9(1), 2025. Number: 1. doi:10.52497/jitipee.v9i1.370.
J. Lowke, J. lPredictions of arc temperature profiles using approximate emission coefficients for radiation losses. J. Qumt. Spectrosc. Rad. Transfer, 14:111–122, 1974.
URL: https://hipercone.com/products/kintechdb.
Harvard-smithsonian center for astrophysics, "kurucz atomic and molecular database," cambridge, MA, USA. URL: https://lweb.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html.
National institute of standards and technology,"atomic spectra database," gaithersburg, MD, USA. URL: https://www.nist.gov/pml/atomic-spectra-database.
M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. Wiley, 1 edition, 2005. ISBN 978-0-471-72001-0 978-0-471-72425-4. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/0471724254, doi:10.1002/0471724254.
F. Lago. Modélisation de l’interaction entre un arc électrique et une surface: application au foudroiement d’un aéronef. PhD thesis, Toulouse 3, 2004.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 C. Simonnet, P. Freton, J.-J. Gonzalez, F. Reichert, A. Petchanka

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).