Sensitivity of Synthetic Test Circuit parameters on thermal interruption tests in CO2 gas mixtures
DOI:
https://doi.org/10.14311/ppt.2025.3.202Keywords:
blown arc, synthetic testing, SF6-alternatives, gas circuit breakerAbstract
Synthetic testing has been extensively utilized to study the thermal interruption performance of CO2-based gas mixtures under the influence of varying physical factors in an experimental HV circuit breaker. To limit contact and nozzle ablation for collecting a statistically meaningful dataset, the lowest possible peak current amplitudes were chosen for the high-current and the injection current phases. The present work focuses on evaluating the sensitivity of the test-circuit parameters on the interruption performance in CO2/O2 (90% /10%) gas mixture.
References
High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers. CH, 2021. URL: https://webstore.iec.ch/en/publication/62785.
IEC 62271-101: High-voltage switchgear and controlgear – Part 101: Synthetic testing of high-voltage alternating current circuit-breakers, 2012. Standard.
G. Frind. Experimental Investigation of Limiting Curves for Current Interruption of Gas Blast Breakers. Springer US, Boston, MA, 1978. ISBN 978-1-4757-1685-6. doi:10.1007/978-1-4757-1685-6_3.
T. Uchii et al. Thermal interruption capability of carbon dioxide in a puffer-type circuit breaker utilizing polymer ablation. In IEEE/PES Transmission and Distribution Conference and Exhibition, volume 3, pages 1750–1754 vol.3, 2002.
B. Radisavljevic et al. Switching Performance of Alternative Gaseous Mixtures in High-Voltage Circuit Breakers. In The 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, 2017.
H. Nishikawa, A. Kobayashi, T. Okazaki, and S. Yamashita. Arc extinction performance of sf6 gas blast interrupter. IEEE Transactions on Power Apparatus and Systems, 95(6):1834–1844, 1976. doi:10.1109/T-PAS.1976.32284.
C. Franck et al. Comparative test program framework for non-SF6 switching gases. B&H Electrical Engineering, 15:23–30, 2021.
P. Pietrzak, M. Perret, M. Boening, et al. Wear of the arcing contacts and gas under free burning arc in SF6 alternatives. IEEE Transactions on Power Delivery, 38(3):2133–2140, 2023. doi:10.1109/TPWRD.2023.3234364.
J. Engelbrecht et al. Statistical methods for identifying small differences in the thermal interruption performance of SF6 alternatives. Plasma Physics and Technology, 10(1):36–39, 2023. doi:10.14311/ppt.2023.1.36.
P. Pietrzak, J. T. Engelbrecht, D. Kumari, and C. M. Franck. Short-line fault interruption performance comparison of sf6 alternatives. IEEE Transactions on Power Delivery, 39(6):3071–3081, 2024. doi:10.1109/TPWRD.2024.3451178.
J. T. Engelbrecht, D. Kumari, P. Pietrzak, and C. M. Franck. Thermal current interruption in CO2-based mixtures part I: Evaluating parameter dependence. Journal of Physics D: Applied Physics, 58(22):225503, 2025. doi:10.1088/1361-6463/adcf33.
J. T. Engelbrecht, D. Kumari, and C. M. Franck. Thermal current interruption in CO2-based mixtures part II: Influence of flow conditions. Journal of Physics D: Applied Physics, 58(22):225504, 2025. doi:10.1088/1361-6463/adcf32.
M. Muratovic, J. T. Engelbrecht, P. Simka, et al. An experimental circuit breaker for benchmarking the intrinsic interruption performance of SF6 alternative gas mixtures. IEEE Transactions on Power Delivery, 39(6):3082–3091, 2024. doi:10.1109/TPWRD.2024.3451235.
W. P. Legros, A. M. Genon, M. M. Morant, et al. Computer aided design of synthetic test circuits for high voltage circuit-breakers. IEEE Power Engineering Review, 9(4):63–64, 1989. doi:10.1109/MPER.1989.4310602.
A. Hochrainer. Synthetic testing for high power circuit-breakers. Electra Report ELT 006-1, CIGRE, 1968.
J. Liu, Q. Zhang, J. D. Yan, et al. Analysis of the characteristics of dc nozzle arcs in air and guidance for the search of sf6 replacement gas. Journal of Physics D: Applied Physics, 49(43):435201, 2016. doi:10.1088/0022-3727/49/43/435201.
L. Zhong, J. Wang, J. Xu, et al. Effects of buffer gases on plasma properties and arc decaying characteristics of c4f7n–n2 and c4f7n–co2 arc plasmas. Plasma Chemistry and Plasma Processing, 39(6):1379–1396, 2019. doi:10.1007/s11090-019-10015-8.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 D. Kumari, C. M. Franck

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).