Sensitivity of Synthetic Test Circuit parameters on thermal interruption tests in CO2 gas mixtures

Authors

  • D. Kumari High Voltage Laboratory, ETH Zürich, Physikstrasse 3, 8092, Switzerland
  • C. M. Franck High Voltage Laboratory, ETH Zürich, Physikstrasse 3, 8092, Switzerland https://orcid.org/0000-0002-2201-7327

DOI:

https://doi.org/10.14311/ppt.2025.3.202

Keywords:

blown arc, synthetic testing, SF6-alternatives, gas circuit breaker

Abstract

Synthetic testing has been extensively utilized to study the thermal interruption performance of CO2-based gas mixtures under the influence of varying physical factors in an experimental HV circuit breaker. To limit contact and nozzle ablation for collecting a statistically meaningful dataset, the lowest possible peak current amplitudes were chosen for the high-current and the injection current phases. The present work focuses on evaluating the sensitivity of the test-circuit parameters on the interruption performance in CO2/O2 (90% /10%) gas mixture.

References

High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers. CH, 2021. URL: https://webstore.iec.ch/en/publication/62785.

IEC 62271-101: High-voltage switchgear and controlgear – Part 101: Synthetic testing of high-voltage alternating current circuit-breakers, 2012. Standard.

G. Frind. Experimental Investigation of Limiting Curves for Current Interruption of Gas Blast Breakers. Springer US, Boston, MA, 1978. ISBN 978-1-4757-1685-6. doi:10.1007/978-1-4757-1685-6_3.

T. Uchii et al. Thermal interruption capability of carbon dioxide in a puffer-type circuit breaker utilizing polymer ablation. In IEEE/PES Transmission and Distribution Conference and Exhibition, volume 3, pages 1750–1754 vol.3, 2002.

B. Radisavljevic et al. Switching Performance of Alternative Gaseous Mixtures in High-Voltage Circuit Breakers. In The 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, 2017.

H. Nishikawa, A. Kobayashi, T. Okazaki, and S. Yamashita. Arc extinction performance of sf6 gas blast interrupter. IEEE Transactions on Power Apparatus and Systems, 95(6):1834–1844, 1976. doi:10.1109/T-PAS.1976.32284.

C. Franck et al. Comparative test program framework for non-SF6 switching gases. B&H Electrical Engineering, 15:23–30, 2021.

P. Pietrzak, M. Perret, M. Boening, et al. Wear of the arcing contacts and gas under free burning arc in SF6 alternatives. IEEE Transactions on Power Delivery, 38(3):2133–2140, 2023. doi:10.1109/TPWRD.2023.3234364.

J. Engelbrecht et al. Statistical methods for identifying small differences in the thermal interruption performance of SF6 alternatives. Plasma Physics and Technology, 10(1):36–39, 2023. doi:10.14311/ppt.2023.1.36.

P. Pietrzak, J. T. Engelbrecht, D. Kumari, and C. M. Franck. Short-line fault interruption performance comparison of sf6 alternatives. IEEE Transactions on Power Delivery, 39(6):3071–3081, 2024. doi:10.1109/TPWRD.2024.3451178.

J. T. Engelbrecht, D. Kumari, P. Pietrzak, and C. M. Franck. Thermal current interruption in CO2-based mixtures part I: Evaluating parameter dependence. Journal of Physics D: Applied Physics, 58(22):225503, 2025. doi:10.1088/1361-6463/adcf33.

J. T. Engelbrecht, D. Kumari, and C. M. Franck. Thermal current interruption in CO2-based mixtures part II: Influence of flow conditions. Journal of Physics D: Applied Physics, 58(22):225504, 2025. doi:10.1088/1361-6463/adcf32.

M. Muratovic, J. T. Engelbrecht, P. Simka, et al. An experimental circuit breaker for benchmarking the intrinsic interruption performance of SF6 alternative gas mixtures. IEEE Transactions on Power Delivery, 39(6):3082–3091, 2024. doi:10.1109/TPWRD.2024.3451235.

W. P. Legros, A. M. Genon, M. M. Morant, et al. Computer aided design of synthetic test circuits for high voltage circuit-breakers. IEEE Power Engineering Review, 9(4):63–64, 1989. doi:10.1109/MPER.1989.4310602.

A. Hochrainer. Synthetic testing for high power circuit-breakers. Electra Report ELT 006-1, CIGRE, 1968.

J. Liu, Q. Zhang, J. D. Yan, et al. Analysis of the characteristics of dc nozzle arcs in air and guidance for the search of sf6 replacement gas. Journal of Physics D: Applied Physics, 49(43):435201, 2016. doi:10.1088/0022-3727/49/43/435201.

L. Zhong, J. Wang, J. Xu, et al. Effects of buffer gases on plasma properties and arc decaying characteristics of c4f7n–n2 and c4f7n–co2 arc plasmas. Plasma Chemistry and Plasma Processing, 39(6):1379–1396, 2019. doi:10.1007/s11090-019-10015-8.

Downloads

Published

2025-12-30

Issue

Section

Articles